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Digital Image Processing 

 

UNIT-I 

DIGITAL IMAGE FUNDAMENTALS AND TRANSFORMS 

 

 

1. ELEMENTS OF VISUAL PERCEPTION 

1.1 ELEMENTS OF HUMAN VISUAL SYSTEMS 

 

• The following figure shows the anatomy of the human eye in cross section  

 

 

 

 

 

 

 

 

 

 

 

 

• There are two types of receptors in the retina 
–   The rods are long slender receptors 

 

–   The cones are generally shorter and thicker in structure 

• The rods and cones are not distributed evenly around the retina.  

• Rods and cones operate differently 
–   Rods are more sensitive to light than cones. 

 

– At low levels of illumination the rods provide a visual response called 
scotopic vision 

 

– Cones respond to higher levels of illumination; their response is called 
photopic vision 
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Rods are more sensitive to light than the cones. 

 

Digital Image Processing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• There are three basic types of cones in the retina  

• These cones have different absorption characteristics as a function of wavelength 
with peak absorptions in the red, green, and blue regions of the optical spectrum.  

• is blue, b is green, and g is red  

Most of the cones are at the fovea. Rods are spread just about everywhere except the 
fovea 

 

 There is a relatively low sensitivity to blue light. There is a lot of overlap
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1.2 IMAGE FORMATION IN THE EYE 
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1.3 CONTRAST SENSITIVITY 

 

• The response of the eye to changes in the intensity of illumination is nonlinear  

• Consider a patch of light of intensity i+dI surrounded by a background intensity I 
as shown in the following figure  

• Over a wide range of intensities, it is found that the ratio dI/I, called the Weber 
fraction, is nearly constant at a value of about 0.02.  

• This does not hold at very low or very high intensities  

• Furthermore, contrast sensitivity is dependent on the intensity of the surround. 
Consider the second panel of the previous figure.  
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1.4 LOGARITHMIC RESPONSE OF CONES AND RODS 

 

• The response of the cones and rods to light is nonlinear. In fact many image 

processing systems assume that the eye's response is logarithmic instead of linear 
with respect to intensity. 

 

• To test the hypothesis that the response of the cones and rods are logarithmic, we 
examine the following two cases: 

 

• If the intensity response of the receptors to intensity is linear, then the derivative 

of the response with respect to intensity should be a constant. This is not the case 
as seen in the next figure.  

• To show that the response to intensity is logarithmic, we take the logarithm of the 
intensity response and then take the derivative with respect to intensity. This 

derivative is nearly a constant proving that intensity response of cones and rods 
can be modeled as a logarithmic response. 

 

• Another way to see this is the following, note that the differential of the logarithm 

of intensity is d(log(I)) = dI/I. Figure 2.3-1 shows the plot of dI/I for the intensity 
response of the human visual system. 

 

• Since this plot is nearly constant in the middle frequencies, we again conclude 

that the intensity response of cones and rods can be modeled as a logarithmic 
response.  
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1.5 SIMULTANEOUS CONTRAST 

 

• The simultaneous contrast phenomenon is illustrated below.  

• The small squares in each image are the same intensity.  

• Because the different background intensities, the small squares do not appear 
equally bright.  

• Perceiving the two squares on different backgrounds as different, even though 
they are in fact identical, is called the simultaneous contrast effect.  

• Psychophysically, we say this effect is caused by the difference in the 
backgrounds, but what is the physiological mechanism behind this effect?  

 

 

 

 

 

 

 

1.6 LATERAL INHIBITION 

• Record signal from nerve fiber of receptor A. 
• Illumination of receptor A alone causes a large response.  

• Add illumination to three nearby receptors at B causes the response at A to 
decrease.  

• Increasing the illumination of B further decreases A‘s response. 
• Thus, illumination of the neighboring receptors inhibited the firing of receptor A.  

• This inhibition is called lateral inhibition because it is transmitted laterally, across 
the retina, in a structure called the lateral plexus.  

• A neural signal is assumed to be generated by a weighted contribution of many 
spatially adjacent rods and cones.  

• Some receptors exert an inhibitory influence on the neural response.  

• The weighting values are, in effect, the impulse response of the human visual 
system beyond the retina. 
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1.7 MACH BAND EFFECT 

 

• Another effect that can be explained by the lateral inhibition. 
• The Mach band effect is illustrated in the figure below.  

• The intensity is uniform over the width of each bar.  

• However, the visual appearance is that each strip is darker at its right side than its 
left.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.8 MACH BAND 
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• The Mach band effect is illustrated in the figure below.  

• A bright bar appears at position B and a dark bar appears at D.  

 

 

 

 

 

 

 

1.9 MODULATION TRANSFER FUNCTION (MTF) EXPERIMENT 

 

• An observer is shown two sine wave grating transparencies, a reference grating of 

constant contrast and spatial frequency, and a variable-contrast test grating whose 
spatial frequency is set at some value different from that of the reference.  

• Contrast is defined as the ratio  
(max-min)/(max+min) 

 

where max and min are the maximum and minimum of the grating 
intensity, respectively. 

 

• The contrast of the test grating is varied until the brightness of the bright and dark 
regions of the two transparencies appear identical.  

• In this manner it is possible to develop a plot of the MTF of the human visual 
system.  

• Note that the response is nearly linear for an exponential sine wave grating.  

 

 

 

 

 

 

 

 

 

 

1.10 MONOCHROME VISION MODEL 
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• The logarithmic/linear system eye model provides a reasonable prediction of 
visual response over a wide range of intensities.  

• However, at high spatial frequencies and at very low or very high intensities, 
observed responses depart from responses predicted by the model.  

 

 

 

 

 

 

 

 

1.11 LIGHT 

 

• Light exhibits some properties that make it appear to consist of particles; at other 
times, it behaves like a wave.  

• Light is electromagnetic energy that radiates from a source of energy (or a source 
of light) in the form of waves  

• Visible light is in the 400 nm – 700 nm range of electromagnetic spectrum  

 

 

 

 

 

 

 

 

1.11.1 INTENSITY OF LIGHT 

 

• The strength of the radiation from a light source is measured using the unit called 

the candela, or candle power. The total energy from the light source, including 
heat and all electromagnetic radiation, is called radiance and is usually expressed 
in watts.  

• Luminance is a measure of the light strength that is actually perceived by the 
human eye. Radiance is a measure of the total output of the source; luminance  

measures just the portion that is perceived. 
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Brightness is a subjective, psychological measure of perceived intensity. 

Brightness is practically impossible to measure objectively. It is relative. For example, a 
burning candle in a darkened room will appear bright to the viewer; it will not appear 

bright in full sunshine. 
 

• The strength of light diminishes in inverse square proportion to its distance from 
its source. This effect accounts for the need for high intensity projectors for 

showing multimedia productions on a screen to an audience. Human light 
perception is sensitive but not linear 

 

2. SAMPLING 
 

Both sounds and images can be considered as signals, in one or two dimensions, 

respectively. Sound can be described as a fluctuation of the acoustic pressure in time, 

while images are spatial distributions of values of luminance or color, the latter being 

described in its RGB or HSB components. Any signal, in order to be processed by 

numerical computing devices, have to be reduced to a sequence of discrete samples, and 

each sample must be represented using a finite number of bits. The first operation is 

called sampling, and the second operation is called quantization of the domain of real 

numbers. 

 

2.1 1-D: Sounds 

 

Sampling is, for one-dimensional signals, the operation that transforms a 
continuous-time signal (such as, for instance, the air pressure fluctuation at the entrance 
of the ear canal) into a discrete-time signal, that is a sequence of numbers. The discrete-
time signal gives the values of the continuous-time signal read at intervals of T seconds. 

The reciprocal of the sampling interval is called sampling rate Fs= 1/T 

 

. In this module we do not explain the theory of sampling, but we rather describe its 
manifestations. For a a more extensive yet accessible treatment, we point to the 

Introduction to Sound Processing. For our purposes, the process of sampling a 1-D signal 
can be reduced to three facts and a theorem. 

 

 Fact 1: The Fourier Transform of a discrete-time signal is a function (called 

spectrum) of the continuous variable ω, and it is periodic with period 2π. Given a 
value of ω, the Fourier transform gives back a complex number that can be 

interpreted as magnitude and phase (translation in time) of the sinusoidal 
component at that frequency.


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 Fact 2: Sampling the continuous-time signal x(t) with interval T we get the 

discrete-time signal x(n) =x(nT) , which is a function of the discrete variable n.


 Fact 3: Sampling a continuous-time signal with sampling rate Fs produces a 

discrete-time signal whose frequency spectrum is the periodic replication of the 

original signal, and the replication period is Fs. The Fourier variable ω for 

functions of discrete variable is converted into the frequency variable f (in Hertz) 
by means of 


 

f=
 ω/2π T 

 

The Figure 1 shows an example of frequency spectrum of a 

signal sampled with sampling rate Fs. In the example, the continuous-time signal had all 

and only the frequency components between −Fb and F b. The replicas of the original 
spectrum are sometimes called images. 

 

Frequency spectrum of a sampled signal 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 

 

 

 

of the Sampling Theorem, historically attributed to the scientists Nyquist and Shannon. 

 

2.2 2-D: Images 
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Let us assume we have a continuous distribution, on a plane, of values of 
luminance or, more simply stated, an image. In order to process it using a computer we 
have to reduce it to a sequence of numbers by means of sampling. There are several ways 
to sample an image, or read its values of luminance at discrete points. The simplest way 
is to use a regular grid, with spatial steps X e Y. Similarly to what we did for sounds, we 

define the spatial sampling rates FX= 1/X 

 

FY= 1/Y 

 

 

 

As in the one-dimensional case, also for two-dimensional signals, or images, sampling 
can be described by three facts and a theorem. 

 

 Fact 1: The Fourier Transform of a discrete-space signal is a function (called 

spectrum) of two continuous variables ωX and ωY, and it is periodic in two 

dimensions with periods 2π. Given a couple of values ωX and ωY, the Fourier 
transform gives back a complex number that can be interpreted as magnitude and 
phase (translation in space) of the sinusoidal component at such spatial  

frequencies. 

 
 

 Fact 2: Sampling the continuous-space signal s(x,y) with the regular grid of steps 

X, Y, gives a discrete-space signal s(m,n) =s(mX,nY) , which is a function of the 
discrete variables m and n.



Fact 3: Sampling a continuous-space signal with spatial frequencies FX and FY 
gives a discrete-space signal whose spectrum is the periodic replication along the 

grid of steps FX and FY of the original signal spectrum. The Fourier variables ωX 

and ωY correspond to the frequencies (in cycles per meter) represented by the 

variables fX= ωX/2πX



 And fy= ωY /2πY

 

. The Figure 2 shows an example of spectrum of a two-dimensional sampled signal. 
There, the continuous-space signal had all and only the frequency components 

included in the central hexagon. The hexagonal shape of the spectral support (region 

of non-null spectral energy) is merely illustrative. The replicas of the original 
spectrum are often called spectral images. 
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Spectrum of a sampled image 

 

 

 

 

 

 

 

 

 

 

Figure 2 

 

Given the above facts, we can have an intuitive understanding of the Sampling Theorem. 

 

3. QUANTIZATION 

 

With the adjective "digital" we indicate those systems that work on signals that 

are represented by numbers, with the (finite) precision that computing systems allow. Up 
to now we have considered discrete-time and discrete-space signals as if they were 

collections of infinite-precision numbers, or real numbers. Unfortunately, computers only 
allow to represent finite subsets of rational numbers. This means that our signals are 

subject to quantization. 

 

For our purposes, the most interesting quantization is the linear one, which is 
usually occurring in the process of conversion of an analog signal into the digital domain. 
If the memory word dedicated to storing a number is made of b bits, then the range of 

such number is discretized into 2
b
 quantization levels. Any value that is found between 

two quantization levels can be approximated by truncation or rounding to the closest 
value. The Figure 3 shows an example of quantization with representation on 3 bits in 

 

two's complement. 

 

Sampling and quantization of an analog signal 
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The approximation introduced by quantization manifests itself as a noise, called 

quantization noise. Often, for the analysis of sound-processing circuits, such noise is 
assumed to be white and de-correlated with the signal, but in reality it is perceptually tied 

to the signal itself, in such an extent that quantization can be perceived as an effect. 

 

To have a visual and intuitive exploration of the phenomenon of quantization, 

consider the applet that allows to vary between 1 and 8 the number of bits dedicated to 
the representation of each of the RGB channels representing color. The same number of 

bits is dedicated to the representation of an audio signal coupled to the image. The visual 
effect that is obtained by reducing the number of bits is similar to a solarization. 

 

4. BASIC RELATIONSHIP BETWEEN PIXELS 

 

4.1 PIXEL 

 

In digital imaging, a pixel (or picture element) is a single point in a raster image. 

The pixel is the smallest addressable screen element; it is the smallest unit of picture that 

can be controlled. Each pixel has its own address. The address of a pixel corresponds to 

its coordinates. Pixels are normally arranged in a 2-dimensional grid, and are often 

represented using dots or squares. Each pixel is a sample of an original image; more 

samples typically provide more accurate representations of the original. The intensity of 

each pixel is variable. In color image systems, a color is typically represented by three or 

four component intensities such as red, green, and blue, or cyan, magenta, yellow, and 

black. 

 

The word pixel is based on a contraction of pix ("pictures") and el (for "element"); 
similar formations with el for "element" include the words: voxel and texel. 

 

 

4.2 Bits per pixel 
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The number of distinct colors that can be represented by a pixel depends on the 

number of bits per pixel (bpp). A 1 bpp image uses 1-bit for each pixel, so each pixel can 
be either on or off. Each additional bit doubles the number of colors available, so a 2 bpp 

image can have 4 colors, and a 3 bpp image can have 8 colors: 

 

 1 bpp, 2
1
 = 2 colors (monochrome)

 2 bpp, 2
2
 = 4 colors

 3 bpp, 2
3
 = 8 colors

 8 bpp, 2
8
 = 256 colors



 16 bpp, 2
16

 = 65,536 colors ("Highcolor" )

 24 bpp, 2
24

 ≈ 16.8 million colors ("Truecolor")
 

For color depths of 15 or more bits per pixel, the depth is normally the sum of the 
bits allocated to each of the red, green, and blue components. Highcolor, usually meaning 
16 bpp, normally has five bits for red and blue, and six bits for green, as the human eye is 

more sensitive to errors in green than in the other two primary colors. For applications 
involving transparency, the 16 bits may be divided into five bits each of red, green, and 
available: this means that each 24-bit pixel has an extra 8 bits to describe its blue, with 
one bit left for transparency. A 24-bit depth allows 8 bits per component. On some 
systems, 32-bit depth is opacity (for purposes of combining with another image). 

 

Selected standard display resolutions include: 

 

 

Name Megapixels Width x Height 

CGA 0.064 320×200 

EGA 0.224 640×350 

VGA 0.3 640×480 

SVGA 0.5 800×600 

XGA 0.8 1024×768 

SXGA 1.3 1280×1024 

UXGA 1.9 1600×1200 

WUXGA 2.3 1920×1200 
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5. BASIC GEOMETRIC TRANSFORMATIONS 

 

Transform theory plays a fundamental role in image processing, as working with 

the transform of an image instead of the image itself may give us more insight into 
the properties of the image. Two dimensional transforms are applied to image 

enhancement, restoration, encoding and description. 

 

5.1. UNITARY TRANSFORMS 

 

5.1.1 One dimensional signals 

 

  For a  one  dimensional sequence  { f (x), 0  x  N 1}  represented  as  a  vector 
 

 f  f (0) f (1)    f (N 1)T  of size N , a transformation may be written as 
 

          N 1 

1 

 

    g  T  f  g(u)  T (u, x) f (x), 0  u  N 
 

          

x 0 

   

            
 

where  g(u) is the transform (or transformation) of  f ( x) , and T (u, x)  is the so called 
 

 

forward transformation kernel. Similarly, the inverse transform is the relation 

N 1 

f (x)   I (x,u)g(u), 0  x  N 1 

u 0  

or written in a matrix form 

 

f  I g  T 1 g  
 

where I (x,u) is the so called inverse transformation kernel. 

 

If 

 

I  T 1  T T 
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the matrix T  is called unitary, and the transformation is called unitary as well. It can be 

 

proven (how?) that the columns (or rows) of an N  N unitary matrix are orthonormal and 

therefore, form a complete set of basis vectors in the N  dimensional vector space. In 

that case 

f  T 
T

 

N 1 
 

 g  f (x)  T 

 (u, x)g(u) 

 

u0 
 

The columns of T T , that is, the vectors T u  T (u,0) T (u,1) T (u, N 1)T are called the 

basis vectors of T . 

 

5.1.2 Two dimensional signals (images) 

 

As a one dimensional signal can be represented by an orthonormal set of basis 
vectors, an image can also be expanded in terms of a discrete set of basis arrays called 

basis images through a two dimensional (image) transform. 

For an N  N  image f ( x, y) the forward and inverse transforms are given below 

 

N 1 N 1 

g(u, v)  T (u, v, x, y) f (x, y) 

x 0 y 0 

N 1 N 1 

f (x, y)   I (x, y, u, v)g(u, v) 
u 0 v 0 

 

where, again, T (u, v, x, y) and I (x, y,u, v) are called the forward and inverse 

 

transformation kernels, respectively. 

 

The forward kernel is said to be separable if 

T (u, v, x, y)  T1(u, x)T2 (v, y) 

It is said to be symmetric if T1  is functionally equal to T2  such that 

T (u, v, x, y)  T1 (u, x)T1 (v, y) 

 

The same comments are valid for the inverse kernel. 
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If the kernel  T (u, v, x, y) of an image transform is separable and symmetric, then the 

 

N 1 N 1 N 1 N 1 

transform g(u, v)  T (u, v, x, y) f (x, y)  T1(u, x)T1(v, y) f (x, y) can  be  written  in 

x 0 y 0 x 0 y 0 

 

matrix form as follows 

 

g  T 1  f T 1
T  

 

where f is the original image of size N  N , and T 1 is an N  N transformation matrix with 

elements tij  T1 (i, j) . If, in addition, T 1 is a unitary matrix then the transform is called 

separable unitary and the original image is recovered through the relationship 

 

f  T1
T

  g T1
  

 

5.1.3 Fundamental properties of unitary transforms 

 

5.1.3.1 The property of energy preservation 

 

In the unitary transformation 

 

g  T  f  

 

 

it is easily proven (try the proof by using the relation T 1  T T ) that 

 

 g 
 2  
  f 

 2
 

 
 

Thus, a unitary transformation preserves the signal energy. This property is called 
energy preservation property. 

 

This means that every unitary transformation is simply a rotation of the vector f in the 
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N - dimensional vector space. 

For the 2-D case the energy preservation property is written as 

N 1 N 1  

2 

N 1 N 1 

2 

 

 f ( x, y)  g(u, v) 
 

x 0 y 0   u0 v 0   
 

 

 

5.1.3.2 The property of energy compaction 

 

Most unitary transforms pack a large fraction of the energy of the image into 
relatively few of the transform coefficients. This means that relatively few of the 
transform coefficients have significant values and these are the coefficients that are close 
to the origin (small index coefficients). 

 

This property is very useful for compression purposes. (Why?) 

 

5.2. THE TWO DIMENSIONAL FOURIER TRANSFORM 

 

5.2.1 Continuous space and continuous frequency 

 

The Fourier  transform is extended to  a function  f ( x, y)  of two variables.  If 
 

f ( x, y)  is continuous and integrable and F(u, v)  is integrable, the following Fourier 
 

transform pair exists:       
 

    

f (x, y)e

 
j
 
2

 
(uxvy

 
)
 dxdy 

  
 

 F (u, v)      
 

        
 

  

1 

     
 

 

f (x, y)  

 

 F (u, v)e 
j
 
2

 
(uxvy)

 dudv 

  
 

 

(2 ) 
2
 

  
 

      
 

In general F(u, v)  is a complex-valued function of two real frequency variables u, v  and 
 

 

hence, it can be written as: 
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F(u, v)  R(u, v)  jI (u, v) 

 

The amplitude spectrum, phase spectrum and power spectrum, respectively, are defined 
as follows. 

 
 

F(u, v)   R
2
 (u, v)  I 

2
 (u, v) 

 

 (u, v)  t an1 


 
I

 
(u,

 
v)

 




 R(u, v) 




 

P(u, v)  F(u, v) 2   R2 (u, v)  I 2 (u, v) 

 

 

 

 

5.2.2 Discrete space and continuous frequency 

 

For the case of a discrete sequence f ( x, y)  of infinite duration we can define the 
 

2-D discrete space Fourier transform pair as follows 
 

F (u, v)  

  
 

 f ( x, y)e

 
j(
 
xuvy

 
) 

 

  x y 
 

 

1 

   
 

f ( x, y)  

 

  F (u, v)e 
j( 

xuvy
 ) dudv 

 

   

  
 

 (2 )2  u v 
 

F(u, v) is again a complex-valued function of two real frequency variables u, v 

and it is periodic with a period 2  2 , that is to say F(u, v)  F(u  2, v)  F(u, v  2) 

The Fourier transform of f ( x, y) is said to converge uniformly when F(u, v) is finite and 

 

 N N 

lim  lim 1 2  f ( x, y)e 
j( 

xuvy
 )   F (u, v)  for all u, v . 

N
1


 
N

2 


 xN1 yN2 

When the Fourier transform of  f ( x, y) converges uniformly, F(u, v) is an analytic 

function and is infinitely differentiable with respect to u and v . 



25 
 

 

5.2.3 Discrete space and discrete frequency: The two dimensional Discrete Fourier 

Transform (2-D DFT) 

If f ( x, y) is an M  N array, such as that obtained by sampling a continuous 

 

function of two dimensions at dimensions M and N on a rectangular grid, then its two 
dimensional Discrete Fourier transform (DFT) is the array given by 

 

 

1 

   M 1 N 1 
 

F (u, v)  

    

 f (x, y)e j 2 (ux / M vy / N ) 
 

      
 

 MN x0  y0 
 

u  0,   , M 1, v  0,   , N 1        
 

and the inverse DFT (IDFT) is        
 

     M 1 N 1 
 

f ( x, y)     F(u, v)e j 2 ( ux / M vy / N ) 
 

     u0 v 0 
 

When images are sampled in a square array,  M  N  and 
 

    1   N 1 N 1 
 

F(u, v)  

      

  f ( x, y)e j 2 (ux vy )/ N 
 

      
 

   N x 0 y 0 
 

    1  N 1 N 1 
 

f ( x, y)  

      

 F(u, v)e j 2 ( ux vy )/ N 
 

      
 

     N u0 v 0 
 

It is straightforward to prove that the two dimensional Discrete Fourier Transform is 
 

separable, symmetric and unitary.        
 

5.2.3.1 Properties of the 2-D DFT        
 

Most of them are straightforward extensions of the properties of the 1-D Fourier 
Transform. Advise any introductory book on Image Processing. 

 

Completeness 

The discrete Fourier transform is an invertible, linear transformation 
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with C denoting the set of complex numbers. In other words, for any N > 0, an N-

dimensional complex vector has a DFT and an IDFT which are in turn N-dimensional 

complex vectors. 

 

Orthogonality 

 

The vectors form an orthogonal basis over the set of N-

dimensional complex vectors: 

 

 

 

 

 

where is the Kronecker delta. This orthogonality condition can be used to derive the 

formula for the IDFT from the definition of the DFT, and is equivalent to the unitarity 

property below. 

 

The Plancherel theorem and Parseval's theorem 

 

If Xk  and Yk  are the DFTs of xn  and yn  respectively then the Plancherel theorem 

 

states: 

 

 

 

 

 

where the star denotes complex conjugation. Parseval's theorem is a special case 
of the Plancherel theorem and states: 
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These theorems are also equivalent to the unitary condition below. 

Periodicity 

If the expression that defines the DFT is evaluated for all integers k instead of just 

for , then the resulting infinite sequence is a periodic extension of 

the DFT, periodic with period N. 

The periodicity can be shown directly from the definition: 

Similarly, it can be shown that the IDFT formula leads to a periodic extension. 

The shift theorem 

Multiplying xn by a linear phase for some integer m corresponds to a 

circular shift of the output Xk: Xk is replaced by Xk − m, where the subscript is interpreted 

modulo N (i.e., periodically). Similarly, a circular shift of the input xn corresponds to 

multiplying the output Xk by a linear phase. Mathematically, if {xn} represents the vector 

x then 
 

if  

 

then  

 

and 

Circular convolution theorem and cross-correlation theorem 

The convolution theorem for the continuous and discrete time Fourier transforms 
indicates that a convolution of two infinite sequences can be obtained as the inverse 

transform of the product of the individual transforms. With sequences and transforms of 

length N, a circularity arises: 
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The quantity in parentheses is 0 for all values of m except those of the form n − l 

 

− pN, where p is any integer. At those values, it is 1. It can therefore be replaced by an 

infinite sum of Kronecker delta functions, and we continue accordingly. Note that we can 
also extend the limits of m to infinity, with the understanding that the x and y sequences 
are defined as 0 outside [0,N-1]: 

 

which is the convolution of the sequence with a periodically extended sequence 
defined by: 

 

 

 

 

Similarly, it can be shown that: 

 

 

 

 

 

which is the cross-correlation of   and 

 

A direct evaluation of the convolution or correlation summation (above) requires 

O(N
2
) operations for an output sequence of length N. An indirect method, using 

transforms, can take advantage of the O(NlogN) efficiency of the fast Fourier transform 
(FFT) to achieve much better performance. Furthermore, convolutions can be used to 
efficiently compute DFTs via Rader's FFT algorithm and Bluestein's FFT algorithm. 

Methods have also been developed to use circular convolution as part of an 
efficient process that achieves normal (non-circular) convolution with an or sequence 
potentially much longer than the practical transform size (N). Two such methods are 

called overlap-save and overlap-add
[1]

. 

 

Convolution theorem duality 

 

It can also be shown that: 
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which is the circular convolution of and . 

 

Trigonometric interpolation polynomial 

 

The trigonometric interpolation polynomial 

 

 

 

 

 

for N even , 

 

 

 

for N odd, 

 

where the coefficients Xk  are given by the DFT of xn  above, satisfies the interpolation 

property p(2πn / N) = xn for . 

 

For even N, notice that the Nyquist component is handled specially. 

 

This interpolation is not unique: aliasing implies that one could add N to any of 

the complex-sinusoid frequencies (e.g. changing e 
−
 
it
 to e

i(N
 
− 1)t

 ) without changing the 

interpolation property, but giving different values in between the xn points. The choice 
above, however, is typical because it has two useful properties. First, it consists of 
sinusoids whose frequencies have the smallest possible magnitudes, and therefore 

 

minimizes the mean-square slope of the interpolating function. Second, if 

the xn are real numbers, then p(t) is real as well. 

 

In contrast, the most obvious trigonometric interpolation polynomial is the one in 
which the frequencies range from 0 to N − 1 (instead of roughly − N / 2 to + N / 2 as 
above), similar to the inverse DFT formula. This interpolation does not minimize the 

slope, and is not generally real-valued for real xn; its use is a common mistake. 
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The unitary DFT 

 

Another way of looking at the DFT is to note that in the above discussion, the 

DFT can be expressed as a Vandermonde matrix: 

 

 

 

 

 

where 

 

 

 

 

 

is a primitive Nth root of unity. The inverse transform is then given by the inverse of the 
above matrix: 

 

 

 

 

With unitary normalization constants , the DFT becomes a unitary transformation, 

defined by a unitary matrix: 

 

 

 

 

 

where det() is the determinant function. The determinant is the product of the 

 

eigenvalues, which are always or as described below. In a real vector space, a 

unitary transformation can be thought of as simply a rigid rotation of the coordinate 

system, and all of the properties of a rigid rotation can be found in the unitary DFT. 
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The orthogonality of the DFT is now expressed as an orthonormality condition 
(which arises in many areas of mathematics as described in root of unity): 

 

 

 

 

 

If is defined as the unitary DFT of the vector then 

 

 

 

 

and the Plancherel theorem is expressed as: 

 

 

 

If we view the DFT as just a coordinate transformation which simply specifies the 

components of a vector in a new coordinate system, then the above is just the statement 
that the dot product of two vectors is preserved under a unitary DFT transformation. For 

 

the special case , this implies that the length of a vector is preserved as well—this 
is just Parseval's theorem: 

 

 

 

 

 

Expressing the inverse DFT in terms of the DFT 

A useful property of the DFT is that the inverse DFT can be easily expressed in 
terms of the (forward) DFT, via several well-known "tricks". (For example, in 

computations, it is often convenient to only implement a fast Fourier transform 
corresponding to one transform direction and then to get the other transform direction 

from the first.) 

 

First, we can compute the inverse DFT by reversing the inputs: 
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(As usual, the subscripts are interpreted modulo N; thus, for n = 0, we have xN − 0 = x0.) 

 

Second, one can also conjugate the inputs and outputs: 

 

 

 

 

Third, a variant of this conjugation trick, which is sometimes preferable because it 
requires no modification of the data values, involves swapping real and imaginary parts 

(which can be done on a computer simply by modifying pointers). Define swap(xn) as xn 

with its real and imaginary parts swapped—that is, if xn = a + bi then swap(xn) is b + ai. 
 

Equivalently, swap(xn) equals . Then 

 

 

 

 

That is, the inverse transform is the same as the forward transform with the real 
and imaginary parts swapped for both input and output, up to a normalization (Duhamel 

et al., 1988). 

 

The conjugation trick can also be used to define a new transform, closely related 
to the DFT, that is involutary—that is, which is its own inverse. In particular, 

 

is clearly its own inverse: . A closely related 

involutary transformation (by a factor of (1+i) /√2) is 

, since the (1 + i) factors in cancel the 2. 

 

For real inputs , the real part of is none other than the discrete Hartley transform, 

 

which is also involutary. 
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Eigenvalues and eigenvectors 

 

The eigenvalues of the DFT matrix are simple and well-known, whereas the 
eigenvectors are complicated, not unique, and are the subject of ongoing research. 

 

Consider  the unitary form defined above  for  the DFT  of length  N,  where 

 

. This 

matrix satisfies the equation: 

 

 

 

This can be seen from the inverse properties above: operating twice gives the 

original data in reverse order, so operating four times gives back the original data and 

is thus the identity matrix. This means that the eigenvalues λ satisfy a characteristic 

equation: 

λ
4
 = 1. 

 

Therefore, the eigenvalues of are the fourth roots of unity: λ is +1, −1, +i, or −i. 

Since there are only four distinct eigenvalues for this matrix, they have 
some multiplicity. The multiplicity gives the number of linearly independent eigenvectors 
corresponding to each eigenvalue. (Note that there are N independent eigenvectors; a 
unitary matrix is never defective.) 

 

The problem of their multiplicity was solved by McClellan and Parks (1972), 
although it was later shown to have been equivalent to a problem solved by Gauss 
(Dickinson and Steiglitz, 1982). The multiplicity depends on the value of N modulo 4, 
and is given by the following table: 

 

size N λ = +1 λ = −1 λ = -i λ = +i 

4m m + 1 m m m − 1 

4m + 1 m + 1 m m m 

4m + 2 m + 1 m + 1 m m 

4m + 3 m + 1 m + 1 m + 1 m 
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Multiplicities of the eigenvalues λ of the unitary DFT matrix U as a function of the 
transform size N (in terms of an integer m). 

 

 

No simple analytical formula for general eigenvectors is known. Moreover, the 

eigenvectors are not unique because any linear combination of eigenvectors for the same 

eigenvalue is also an eigenvector for that eigenvalue. Various researchers have proposed 

different choices of eigenvectors, selected to satisfy useful properties like orthogonality 

and to have "simple" forms (e.g., McClellan and Parks, 1972; Dickinson and Steiglitz, 

1982; Grünbaum, 1982; Atakishiyev and Wolf, 1997; Candan et al., 2000; Hanna et al., 

2004; Gurevich and Hadani, 2008). However two simple closed-form analytical 

eigenvectors for special DFT period N were found (Kong, 2008): 

 

For DFT period N = 2L + 1 = 4K +1, where K is an integer, the following is an 
eigenvector of DFT: 

 

 

 

 

 

 

For DFT period N = 2L = 4K, where K is an integer, the following is an eigenvector of 

 

DFT: 

 

 

 

 

 

The choice of eigenvectors of the DFT matrix has become important in recent 

years in order to define a discrete analogue of the fractional Fourier transform—the DFT 

matrix can be taken to fractional powers by exponentiating the eigenvalues (e.g., Rubio 

and Santhanam, 2005). For the continuous Fourier transform, the natural orthogonal 

eigenfunctions are the Hermite functions, so various discrete analogues of these have 

been employed as the eigenvectors of the DFT, such as the Kravchuk polynomials 

(Atakishiyev and Wolf, 1997). The "best" choice of eigenvectors to define a fractional 

discrete Fourier transform remains an open question, however. 
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The real-input DFT 

 

If are real numbers, as they often are in practical applications, 
then the DFT obeys the symmetry: 

 

 

 

The star denotes complex conjugation. The subscripts are interpreted modulo N. 

 

Therefore, the DFT output for real inputs is half redundant, and one obtains the complete 

information by only looking at roughly half of the outputs . In this case, 

the "DC" element X0 is purely real, and for even N the "Nyquist" element XN / 2 is also 

real, so there are exactly N non-redundant real numbers in the first half + Nyquist element 
of the complex output X. 

 

Using Euler's formula, the interpolating trigonometric polynomial can then be interpreted 
as a sum of sine and cosine functions. 

 

5.2.3.2 The importance of the phase in 2-D DFT. Image reconstruction from 
amplitude or phase only. 

 

The Fourier transform of a sequence is, in general, complex-valued, and the 
unique representation of a sequence in the Fourier transform domain requires both the 
phase and the magnitude of the Fourier transform. In various contexts it is often desirable 
to reconstruct a signal from only partial domain information. Consider a 2-D sequence 

 

f ( x, y) with Fourier transform F(u, v) f (x, y) so that 
  j (u,v) 

 

F (u, v) { f (x, y} F (u, v) e f 

 

It has been observed that a straightforward signal synthesis from the Fourier 

transform phase f (u, v) alone, often captures most of the intelligibility of the original 

 

image  f ( x, y) (why?). A straightforward synthesis from the Fourier transform magnitude 

F (u, v)  alone, however, does not generally capture the original signal‘s intelligibility. 

 

The above observation is valid for a large number of signals (or images). To illustrate 

this, we can synthesise the phase-only signal f p (x, y) and the magnitude-only signal 
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fm
 
(x,

 
y)

 

by
                       f p (x, y) 11e j f  (u,v)  fm (x, y) 

1F(u, v) e j 0  

 

and observe the two results (Try this exercise in MATLAB). 
 

An experiment which more dramatically illustrates the observation that phase-only signal 
synthesis captures more of the signal intelligibility than magnitude-only synthesis, can be 
performed as follows. 

 

Consider two images f ( x, y) and g(x, y) . From these two images, we synthesise two other 

images f1 (x, y) and g1 (x, y) by mixing the amplitudes and phases of the original images as 

follows: 

f1(x, y) 1G(u, v) e j f  (u,v)  

 

g1(x, y) 1F (u, v) e jg (u,v)  

 

In this experiment f1 (x, y) captures the intelligibility of f ( x, y) , while g1 (x, y) captures 

the intelligibility of g(x, y) (Try this exercise in MATLAB). 

 

5.3 FAST FOURIER TRANSFORM (FFT) 

 

In this section we present several methods for computing the DFT efficiently. In 

view of the importance of the DFT in various digital signal processing applications, such 
as linear filtering, correlation analysis, and spectrum analysis, its efficient computation is 

a topic that has received considerable attention by many mathematicians, engineers, and 

applied scientists. 

 

From this point, we change the notation that X(k), instead of y(k) in previous 
sections, represents the Fourier coefficients of x(n). 

 

Basically, the computational problem for the DFT is to compute the sequence 
{X(k)} of N complex-valued numbers given another sequence of data {x(n)} of length N, 
according to the formula 
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In general, the data sequence x(n) is also assumed to be complex valued. 
Similarly, The IDFT becomes 

 

 

 

 

 

 

 

Since DFT and IDFT involve basically the same type of computations, our 
discussion of efficient computational algorithms for the DFT applies as well to the 
efficient computation of the IDFT. 

 

We observe that for each value of k, direct computation of X(k) involves N 
complex multiplications (4N real multiplications) and N-1 complex additions (4N-2 real 

additions). Consequently, to compute all N values of the DFT requires N 
2
 complex 

multiplications and N 
2
-N complex additions. 

 

Direct computation of the DFT is basically inefficient primarily because it does 

not exploit the symmetry and periodicity properties of the phase factor WN. In particular, 
these two properties are : 

 

 

 

 

The computationally efficient algorithms described in this section, known 
collectively as fast Fourier transform (FFT) algorithms, exploit these two basic properties 
of the phase factor. 

 

6. SEPARABLE IMAGE TRANSFORMS 

6.1 THE DISCRETE COSINE TRANSFORM (DCT) 

6.1.1 One dimensional signals 

 

This is a transform that is similar to the Fourier transform in the sense that the new 
independent variable represents again frequency. The DCT is defined below. 

N 1   (2x 1)u   
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C(u)  a(u)  f (x) cos 

 

 , u  0,1,   , N 1 
 

 
 

x 0   2N  
 

with a(u) a parameter that is defined below.    
 

 

   

u  0 

 
 

1/ N  
 

       
 

a(u)        
 

 

  

u 1,   , N 1 

 

 2 / N 
 

       
 

 

The inverse DCT (IDCT) is defined below. 

N 1  (2x 1)u  
 

f (x)   a(u)C(u) cos 

 

 
 

 
 

u 0  2N 
 

 

6.1.2 Two dimensional signals (images) 

 

For 2-D signals it is defined as 

N 1 N 1  (2x 1)u   (2 y 1)v  
 

C(u, v)  a(u)a(v)  f (x, y) cos 
 

 cos 
 

 
 

2N 2N 

 

x 0 y 0     
 

N 1 N 1  (2x 1)u   (2 y 1)v  
 

f (x, y)  a(u)a(v)C(u, v) cos 
 

 cos 
 

 
 

2N 2N 

 

u 0 v 0     
 

a(u) is defined as above and u, v  0,1, , N 1 

 

6.1.3 Properties of the DCT transform 

 

 The DCT is a real transform. This property makes it attractive in comparison to the Fourier transform.




 The DCT has excellent energy compaction properties. For that reason it is widely used in image 
compression standards (as for example JPEG standards).


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 There are fast algorithms to compute the DCT, similar to the FFT for computing the DFT.


 

 

6.2 WALSH TRANSFORM (WT) 

 

6.2.1 One dimensional signals 

 

This transform is slightly different from the transforms you have met so far. Suppose we 

have a function f (x), x  0, , N 1 where N  2
n
 and its Walsh transform W (u) . 

 

If we use binary representation for the values of the independent variables x and u we need n bits 

to represent them. Hence, for the binary representation of x and u we can write: 

 

 (x)10  bn1 (x)bn2 (x) b0 (x)2 , (u)10  bn1 (u)bn2 (u) b0 (u)2 

 

with bi (x) 0 or 1 for i  0,   , n 1.         
 

Example             
 

If f (x), x  0,   ,7, (8 samples)    then n  3 and for x  6 , 
 

6 = (110)  b (6) 1, b (6) 1, b (6)  0      
 

 2 2 1 0          
 

We define now the 1-D Walsh transform as     
 

     

1 

 N 1 n1     
 

    

W (u)    f (x)

 (1)

b
i 
(
 
x)b

n 1i 
(u

 
)
 
 or 

  
 

       
 

     N x0 i0     
 

       

1 N 1 

n 1    
 

       bi ( x)bn 1i (u )    
 

    

W (u)  

   

 f (x)(1) i 0 

   
 

          
 

       N x0     
 

The array formed by the Walsh kernels is again a symmetric matrix having orthogonal rows and 

columns. Therefore, the Walsh transform is and its elements are of the form 

n 1 

T (u, x)  (1)bi ( x)b
n1i (u) . You can immediately observe that T (u, x)  0 or 1 depending on the 

i 0 
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values of bi (x) and bn1i (u) . If the Walsh transform is written in a matrix form 

 

W  T  f 

the rows of the matrix T which are the vectors T (u,0) T (u,1) T (u, N 1) have the form of 

square waves. As the variable u (which represents the index of the transform) increases, the 

corresponding square wave‘s ―frequency‖ increases as well. For example for u  0 we see that 

(u)10  bn1(u)bn2 (u) b0 (u)2  00 02 and hence, bn1i (u)  0 , for any i . Thus, T (0, x) 1 

 

 

W (0)  

1 N 1 
 

and 

 

 f (x) . We see that the first element of the Walsh transform in the mean of the 
 

 
 

  N x 0  
 

original function f (x) (the DC value) as it is the case with the Fourier transform. 
 

 

 

The inverse Walsh transform is defined as follows. 

N 1 n1 b ( x)b (u )  

or 
 

f (x)  W (u) (1) in 1i  
 

u0 i0     
 

 

 n 1 

N 1 bi ( x)bn 1i (u ) 

f (x)  W (u)(1) i 0 

u 0 

 

6.2.2 Two dimensional signals 

 

 

The Walsh transform is defined as follows for two dimensional signals. 

 

 

1 

 N 1 N 1 n1   
 

W (u, v)  

 

 f ( x, y)

 (1)

(b
i 
(
 
x)b

n1i 
(u)b

i 
(
 
y

 
)b

n1i 
(v)) 

 or 
 

  
 

 N x0 y 0 i 0    
 

    

1 N 1 N 1 

 n 1   
 

     (bi ( x )bn 1i (u)bi ( y )bn 1i (v ))   
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W (u, v)  

  

 f ( x, y)(1) i 0 

  
 

    
 

    N x0 y 0     
 

 

The inverse Walsh transform is defined as follows for two dimensional signals. 

f ( x, y)  

1 

 N 1 N 1 

 

n1 

(1)(b
i 
(

 
x

 
)b

n1i 
(u)b

i 
(

 
y

 
)b

n1i 

(v ))  

 
 

   

W (u, v) 

 

or 
 

    

  

 

       
 

 N u0 v0 i 0    
 

   

1 

   n1   
 

   N 1 N 1   (bi ( x )bn1i (u)bi ( y )bn1i (v ))  
 

           
 

f ( x, y)  

  

W (u, v)(1)i0 

  
 

    
 

    N u0 v0      
 

 

6.2.3 Properties of the Walsh Transform 

 

 Unlike the Fourier transform, which is based on trigonometric terms, the Walsh transform 
consists of a series expansion of basis functions whose values are only 1 or 1 and they have 
the form of square waves. These functions can be implemented more efficiently in a digital 
environment than the exponential basis functions of the Fourier transform.



 The forward and inverse Walsh kernels are identical except for a constant multiplicative 

factor of N
1

 for 1-D signals.




 The forward and inverse Walsh kernels are identical for 2-D signals. This is because the array 
formed by the kernels is a symmetric matrix having orthogonal rows and columns, so its 
inverse array is the same as the array itself.



 The concept of frequency exists also in Walsh transform basis functions. We can think of 
frequency as the number of zero crossings or the number of transitions in a basis vector and 
we call this number sequency. The Walsh transform exhibits the property of energy 
compaction as all the transforms that we are currently studying. (why?)



 For the fast computation of the Walsh transform there exists an algorithm called Fast Walsh 
Transform (FWT). This is a straightforward modification of the FFT. Advise any 
introductory book for your own interest.


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6.3 HADAMARD TRANSFORM (HT) 

 

6.3.1 Definition 

 

In a similar form as the Walsh transform, the 2-D Hadamard transform is defined as follows. 

 

Forward 

 

 

1 
N 1 N 1   n1    

 

H (u, v)   f ( x, y)

 (1)

(b
i 
(
 
x)b

i 
(u)b

i 
(
 
y

 
)b

i 
(v

 
))

  , N  2
n
 or 

 

 
 

 N x0 y 0   i 0    
 

   

1 

   n1   
 

    N 1 N 1 (bi ( x )bi (u)bi ( y )bi (v)) 
 

H (u, v)  

  

 f ( x, y)(1)i0 

  
 

    
 

   N x0 y 0     
 

 

 

Inverse 

 

 

1 
N 1 N 1 n1   

 

f ( x, y)   H (u, v)

 (1)

(b
i 
(
 
x

 
)b

i 
(u)b

i 
(
 
y

 
)b

i 
(v

 
))  etc. 

 

 
 

 N u0 v0  i 0    
 

 

6.3.2 Properties of the Hadamard Transform 

 

 Most of the comments made for Walsh transform are valid here.


 

 The Hadamard transform differs from the Walsh transform only in the order of basis 
functions. The order of basis functions of the Hadamard transform does not allow the fast 
computation of it by using a straightforward modification of the FFT. An extended version of 
the Hadamard transform is the Ordered Hadamard Transform for which a fast algorithm 
called Fast Hadamard Transform (FHT) can be applied.


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 An important property of Hadamard transform is that, letting H N represent the matrix of 
order N , the recursive relationship is given by the expression



 

H 

N 

H 

N 

 
 

H
 2 N  


    

 


H

 N 


 
H

 N  
 

6.4 KARHUNEN-LOEVE (KLT) or HOTELLING TRANSFORM 

 

The Karhunen-Loeve Transform or KLT was originally introduced as a series expansion 

for continuous random processes by Karhunen and Loeve. For discrete signals Hotelling first 
studied what was called a method of principal components, which is the discrete equivalent of the 

KL series expansion. Consequently, the KL transform is also called the Hotelling transform or the 
method of principal components. The term KLT is the most widely used. 

 

6.4.1 The case of many realisations of a signal or image (Gonzalez/Woods) 

 

The concepts of eigenvalue and eigevector are necessary to understand the KL 
transform. 

 

 

If C is a matrix of dimension n  n , then a scalar  is called an eigenvalue of C if there is a 

nonzero vector e in R
n
 such that 

Ce  e 

 

The vector e is called an eigenvector of the matrix C  corresponding to the eigenvalue  . 

(If you have difficulties with the above concepts consult any elementary linear algebra 

book.) 

 

Consider a population of random vectors of the form 

 

 x1  

x  x
2  

  

  

xn  

The mean vector of the population is defined as 
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m x   Ex 

 

The operator E refers to the expected value of the population calculated theoretically 

using the probability density functions (pdf) of the elements xi and the joint probability density 

functions between the elements xi and x j . 

The covariance matrix of the population is defined as 

C x   E(x  mx )(x  mx )
T
  

 

 

Because x 

 

is  n -dimensional, 
C 

x and ( 

x 

 

m 

x )( 

x 

 

m 

x )
T
 are matrices  of  order  n n .  The 

 

 

    

 

  
 

element cii of 
C 

x 

is the variance of 
xi , and the element cij of 

C 

x 

is the covariance between the 
 

      
 

elements xi and x j . If the elements  xi and  x j  are uncorrelated, their covariance is zero and, 
 

therefore, 
c

ij  


 
c

 ji  0 .               
 

For M vectors from a random population, where M is large enough, the mean vector and 
covariance matrix can be approximately calculated from the vectors by using the following 
relationships where all the expected values are approximated by summations 

     

x  


 

1  M       
 

   

m 

    

 x k 

 

       
 

       M k 1       
 

 

x   

1 M      T 

 

   T 
 

C 

    

 x k x k m x m x 

 

    
 

M k 1 

 

Very easily it can be seen that C x is real and symmetric. In that case a set of n orthonormal (at 

this point you are familiar with that term) eigenvectors always exists. Let ei and i , i 1,2, ,n , 

be this set of eigenvectors and corresponding eigenvalues of C x , arranged in descending order so 

that i  i1 for i 1,2, , n 1. Let A be a matrix whose rows are formed from the eigenvectors of 

C x , ordered so that the first row of A is the eigenvector corresponding 

 

to the largest eigenvalue, and the last row the eigenvector corresponding to the smallest 
eigenvalue. 
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Suppose that A is a transformation matrix that maps the vectors x' s into vectors y' s by using the 

following transformation 

 

y  A(x  mx )  

 

The above transform is called the Karhunen-Loeve or Hotelling transform. The mean of the y 

vectors resulting from the above transformation is zero (try to prove that) 

 

m y   0 

 

the covariance matrix is (try to prove that) 

 

C y   AC x A
T 

 

and C y is a diagonal matrix whose elements along the main diagonal are the eigenvalues of C x 

(try to prove that) 

    0  
 

   1 


2 

 
 

C  

   

 

 

y  

 

 
 

 

  
 

      
 

   0  


n  
 

The off-diagonal elements of the covariance matrix are  0 , so the elements of the y 

 

 

vectors are uncorrelated. 

 

Lets try to reconstruct any of the original vectors  x  from its corresponding  y . Because the rows 

 

 

of A are orthonormal vectors (why?), then A
1

  A
T
 , and any vector x can by recovered from its 

corresponding vector y by using the relation 

 

 

x AT  y  m x  
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Suppose that instead of using all the eigenvectors of C x we form matrix AK from the K 

eigenvectors corresponding to the K largest eigenvalues, yielding a transformation matrix of 

 

order  K  n . The  y  vectors would then be K  dimensional, and the reconstruction of any of the 
 

                

original vectors would be approximated by the following relationship 
 

     
xˆ 
 

A 

T
K y  

m 

x 

  
 

         

           

           

The mean square error between the perfect reconstruction x  and the approximate reconstruction 
 

 xˆ is given by the expression            
 

    n   K n 

j . 

 

    ems   j  j    
 

    j 1   j 1 j K 1   
 

 

By using  AK  instead of  A for the KL transform we achieve compression of the available data. 

 

6.4.2 The case of one realisation of a signal or image 

 

The derivation of the KLT for the case of one image realisation assumes that the two 

dimensional signal (image) is ergodic. This assumption allows us to calculate the statistics of the 

image using only one realisation. Usually we divide the image into blocks and we apply the KLT 

in each block. This is reasonable because the 2-D field is likely to be ergodic within a small block 

since the nature of the signal changes within the whole image. Let‘s suppose that f is a vector 

 
 

obtained by lexicographic ordering of the pixels f (x, y) within a block of size M  M (placing the 

rows of the block sequentially). 

 

The mean vector of the random field inside the block is a scalar that is estimated by the 
approximate relationship 

 

m f   

1  M 
2 

 

  

 f (k ) 

 

M 

2 
 

  

k 1 

 

 

 

   
 

and the covariance matrix of the 2-D random field inside the block is C f where 
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  1   M 
2 

 

cii   

    

 f (k) f (k)  m2
f 

 

2  
 

and 

 

M  k 1 

  

  

  

 

 

     
 

             
 

  1  M 
2 

 

c
ij  

c
i  j  

    

 f (k) f (k  i  j)  m2
f 

 

 2   
 

  

M  k 1 

 

 

 

 

 

    
 

After knowing how to calculate the matrix C f , the KLT for the case of a single realisation is the 

same as described above. 

 

6.4.3 Properties of the Karhunen-Loeve transform 

 

Despite its favourable theoretical properties, the KLT is not used in practice for the 
following reasons. 

 

 Its basis functions depend on the covariance matrix of the image, and hence they have to recomputed 
and transmitted for every image.



 Perfect decorrelation is not possible, since images can rarely be modelled as realisations of ergodic 
fields.



 There are no fast computational algorithms for its implementation.


 

 

 

UNIT II 

 

IMAGE ENHANCEMENT TECHNIQUES 

 

Spatial Domain methods: Basic grey level transformation – Histogram equalization – 

 

Image subtraction – Image averaging –Spatial filtering: Smoothing, sharpening filters – 

 

Laplacian filters – Frequency domain filters: Smoothing – Sharpening filters – 
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Homomorphic filtering. 

 

 

1. SPATIAL DOMAIN METHODS 

 

* Suppose we have a digital image which can be represented by a two 
dimensional random field f ( x, y) .  

* An image processing operator in the spatial domain may be expressed as a  applied 
to the image f ( x, y) to produce a new imagemathematicalfunctionT 

g(x, y)  Tf (x, y) as follows. 

g(x, y)  Tf (x, y) 

 

The operator T  applied on  f ( x, y) may be defined over: 

 

(i) A single pixel  ( x, y) . In this case  T  is a grey level transformation (or  

mapping) function. 

 

(ii) Some neighbourhood of ( x, y) .  

(iii) T  may operate to a set of input images instead of a single image. 
 

Example 1 

 

The result of the transformation shown in the figure below is to produce an image of 

higher contrast than the original, by darkening the levels below m and brightening the 

levels above m in the original image. This technique is known as contrast stretching. 

 

s  T (r) 
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m 
r

 

 

Example 2 

 

 

The result of the transformation shown in the figure below is to produce a binary image. 

 

 

 

s  T (r)  
 

m 

r 
 

 
 

 

 

 

2. BASIC GRAY LEVEL TRANSFORMATIONS 

 

 

* We  begin  the  study  of image  enhancement techniques b y  discussing 

 

gray-level  transformation functions. These are among the simplest of  all image 

 

enhancement techniques. 
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* The values of pixels, before and after processing, will be denoted by r and 

s, respectively. As indicated in the previous section, these values are related by an  

expression of the form s=T(r), where T is a transformation that maps a pixel value r into a 

pixel value s. 

 

* Since we are dealing with digital quantities, values of the transformation 

function typically are stored in a one-dimensional a r r a y and the mappings from r to s 

are implemented v i a table lookups. For an 8-bit environment, a lookup table containing 

the values of T will have 256 entries.  

* As an introduction to gray-level transformations, consider Fig. 3.3, which 
shows three basic types of functions used frequently for image enhancement:  

linear (negative and identity transformations), logarithmic (log and inverse-log 

transformations), and power-law (nth power and nth root transformations). 

 

* The identity function is the  trivial  case  in which  output int e ns it ie s 

 

ar e  identical to input intensities.  It is included in the graph only for completeness. 

 

2.1 Image Negatives 

 

The negative of an image with gray levels in the range [0, L-1] is obtained by 

using the negative transformation shown in Fig. 3.3, which is given by the expression 

Reversing the intensity levels of an image in this manner produces the equivalent of a 

photographic negative.  This type of processing is particularly s u i t e d for enhancing 

whit e or  gray detail embedded i n  dark regions of an image,  especially  when  the 

black areas are dominant i n size. An  example is shown in Fig. 3.4. The original 

image is a digital mammogram s h o w i n g a small lesion. In spite of the fact that the 

visual content is the same  in both images, note how much easier it is to analyze the 

breast tissue in the negative image  in this particular case. 

2.2 Log Transformations        

 The general form of the log transformation shown in Fig. 3.3 is  

    s = c log (1 + r)       

 where c is a constant,  and it is assumed  that r 0.    
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 The shape of the log curve in Fig. 3.3 shows that this transformation maps 
a narrow range of low gray-level values in the input image into a wider 
range of output levels.

 The opposite is true of higher  values  of input  levels. We would  use a
transformation of this type to expand the values of dark pixels in an image 
while compressing the higher-level values. The opposite is true of the 
inverse log transformation. 

* Any  curve  having  the  general shape of  the  log  functions shown  in  

Fig. 3.3 would accomplish this spreading/compressing of gray levels in an image. In fact, 

the power-law t ransfor mat ions discussed in the next section are much more versatile for 

this purpose t han the log transformation. However, the log function has 

 

the important char a ct er ist ic  t hat it compresses the dynamic  range  of images with 

 

large variations in pixel values. 

 

* A classic illustration o f an application in which pixel values have a large 

dynamic range is the Fourier spectrum; we are concerned o nly with the image 

characteristics o f spectra. It is not unusual to encounter s p e c t r u m values that range 

from 0 to 10
6

 or higher. While processing numbers such as these presents no problems 

for a  computer,  image display systems generally  will  not be  able to  reproduce 

 

f a i t h f u l l y such a wide range of intensity  values. The net effect is that  a significant 

 

degree of detail will be lost in the display of a typical Fourier spectrum. 

 

As an illustration of log transformations, F i g . 3.5(a) shows a Fourier spectrum with 

 

values in the range 0 to 1.5*10
6

. When these values are scaled linearly for display in an 
8-bit system, the brightest pixels will dominate the display, at the expense of lower 

 

 

(and just as important) v a l u e s of the spectrum. The effect of this dominance i s 

illustrated v i v i d l y by the relatively small area of the image in Fig. 3.5(a) that is not 

perceived as black. If, instead of displaying the values in this manner, we first apply Eq. 

(3.2-2) (with c=1 in this case) to the spectrum values, then the range of values of the 

result become 0 to 6.2, a more manageable number. Figure 3.5(b) shows the result of 

scaling this new range linearly and displaying the spectrum in the same 8-bit display. The 

wealth of detail visible in this image as compared to a straight display of the spectrum is 

evident from these pictures. Most of the Fourier spect r a seen in image processing 

publications h a v e been scaled in just this manner. 
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2.3 Power-Law Transformations 

 

Power-law transformations have the basic form s = cr
g

 

where c and  g are  positive constants. Sometimes E q .  (3.2-3)  is written as 

s = c(r + e)
g

 to account for an offset (that is, a measurable output when the input is zero). 
However, offsets typically are an issue of display calibration and as a result they are 
normally ignored in Eq. (3.2-3). Plots of s versus r for various values of g are shown in 
Fig. 3.6. As in the case of the log transformation, power-law curves with fractional values 
of g map a narrow range of dark input values into a wider range of output values, with the 
opposite being true for higher values of input levels. 

 

 

 

                                
 

                                
 

                                
 

                                
 

                                
 

                                
 

                                
 

                                
 

                                
 

                                
 

                                
 

                                
 

                                
 

                                
 

                                
 

                                
 

                                
 

                                
 

                                
 

                                
 

                                
 

                                
 

*  Unlike t he 

 log  function,  however,  we   notice here 
a family  of  possible 

 

                            
 

transformation curves obtained s i m p l y by varying g. As expected, we see in Fig. 3.6 
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that curves  generated w i t h values  of  g>1 have  exactly  the opposite e ffect  as 
 

those generated w i t h values  of g<1. Finally, we note that  Eq. (3.2-3) reduces to 
 

the identity transformation when c= g =1 .             
 

 

* A variety of devices used for image capture, printing, and display respond 

according to a power law. By convention, the exponent in the power-law equation is 

referred to as gamma [hence our use of this symbol in Eq. (3.2-3)]. The process used to  

correct t his power-law response p he no me no n is called  gamma correction. For 

example, cathode r a y tube (CRT) d e vic e s have intensity-to-volt- age  response that 

is a p o w e r function,   with  exponents varying from approximately 1 . 8 to 2.5. 

 

With reference t o the curve for g=2.5 in Fig. 3.6, we see that such display systems 

 

 

would tend to produce i m a g e s that are darker than intended. This effect is illustrated in 

Fig. 3.7. Figure 3.7(a) shows a simple gray-scale linear wedge input into a CRT monitor. 

As expected, the output of the monitor appears darker than the input, as shown in Fig. 

3.7(b). 

 

* Gamma correction in this case is straightforward. All we need to do is 

preprocess t he input image before inputt ing it into the monitor by performing t h e  

transformations = r
1 2.5 =

 r
0.4

. The result is shown in Fig. 3.7(c). When input into the 

same monitor, this gamma-corrected input produces a n output t ha t is close in 
appearance t o the original image, as shown in Fig. 3.7(d). A similar analysis would 

 

apply to other imaging devices such as scanners and printers. The only difference would 

be the device-dependent value of gamma (Poynton [ 1996]). 

 

* Gamma correction is important i f displaying an image accurately on a 

computer screen is of concern. Images that are not corrected pro per ly can look either 

bleached out, or, what is more likely, too dark. Trying to reproduce c o l o r s accurately 

also requires some knowledge of gamma correction because varying the value of gamma 

correction changes not only the brightness, but also the ratios of red  

to  green to  blue.  Gamma co r r e ct io n  h a s become increasingly important in  the 

past few years,  as use of digital  images  for commercial purposes over  the Internet 

h a s increased.  It is not  unusual  that  images created for a popular  Web  site will be 
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viewed by millions of people, the majority of whom will have different monitors and/or 

monitor settings. 

 

2. Spatial domain: Enhancement by point processing 

 

We are dealing now with image processing methods that are based only on the 
intensity of single pixels. 

 

2.1 Intensity transformations  

2.1.1 Image Negatives  

 The  negative  of  a  digital  image  is  obtained by  the  transformation  function 

s  T (r)  L 1 r  shown in the following figure, where L  is the number of grey levels. 

 

The idea is that the intensity of the output image decreases as the intensity of the input 
increases. This is useful in numerous applications such as displaying medical images. 

 

s  T (r) 

 

 

L  

 

 

 

 

 

L 1 
r
 

 

2.1.2 Contrast Stretching 

 

Low contrast images occur often due to poor or non uniform lighting conditions, 
or due to nonlinearity, or small dynamic range of the imaging sensor. In the figure of 
Example 1 above you have seen a typical contrast stretching transformation. 

 

 



55 
 

2.2 Histogram processing. Definition of the histogram of an image. 

 

By processing (modifying) the histogram of an image we can create a new image 
with specific desired properties. 

 

Suppose we have a digital image of size N  N with grey levels in the range [0, L 

1] . The histogram of the image is defined as the following discrete function: 

 

p(rk )  N
nk

2 

 
 

where 

rk  is the kt h grey level, k  0,1, , L 1 

 

nk  is the number of pixels in the image with grey level rk 

 

N 
2
  is the total number of pixels in the image 

The histogram represents the frequency of occurrence of the various grey levels in the 
image. A plot of this function for all values of k provides a global description of the 
appearance of the image. 

 

 

2.3 Global histogram equalization 

 

In this section we will assume that the image to be processed has a continuous 

intensity that lies within the interval [0, L 1] . Suppose we divide the image intensity with 

 

its  maximum  value L 1 .  Let  the  variable r represent  the  new  grey  levels  (image 

intensity) in the image, where now 0  r 1 and let pr (r)  denote the probability density 

 

function (pdf) of the variable r . We now apply the following transformation function to 
the intensity 

r 

s  T (r)   pr (w)dw , 0  r 1 

0 
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(1) By observing the transformation of equation (1) we immediately see that it possesses 
the following properties: 

 

(i) 0  s 1 . 

(ii) r2   r1 T (r2 )  T (r1 ) , i.e., the function T (r) is increase ng with r .   
 

 0   1     
 

(iii) s  T (0)   pr (w)dw  0 and  s  T (1)   pr (w)dw 1.  Moreover, if  the  original 
 

 0   0     
 

 
image   has intensities 

only 
within a   certain range   [rmin , rmax ] then 

 

  
 

 r
min     r

max   
 

 s  T (rmin )   pr (w)dw  0  and s  T (rmax )   pr (w)dw 1 since 
 

 0      0   
 

 

pr (r)  0, r  rmin and r  rmax . Therefore, the new intensity s takes always all 

values within the available range [0 1]. 

 

Suppose that Pr (r) , Ps (s) are the probability distribution functions (PDF‘s) of the 

variables r and s respectively. 

 

Let us assume that the original intensity lies within the values r and r  dr with dr a small 

quantity. dr can be assumed small enough so as to be able to consider the function 

pr (w) constant within the interval [r, r  dr] and equal to  pr (r) . Therefore,  
 

  r dr      r dr       
 

 Pr [r, r  dr]   pr (w)dw  pr (r)   dw  pr (r)dr .      
 

  r      r       
 

Now suppose that s  T (r)  and s1  T (r  dr) . The quantity dr  can be assumed small 
 

enough so as to be able to consider that s1  s  ds with ds small enough so as to be able 
 

to consider the function  ps (w) constant within the interval [s, s  ds] and equal to ps (s) . 
 

Therefore,                
 

  s ds      s ds       
 

 Ps [s, s  ds]   ps (w)dw  ps (s)   dw  ps (s)ds      
 

  s      s       
 



57 
 

Since s  T (r) , s  ds  T (r  dr) and the function of equation (1) is increasing with r , all 
 

and only the values within the interval  [r, r  dr] will be mapped within the interval 
 

[s, s  ds] . Therefore,               
 

      1          
 

P [r, r  dr]  P [s, s  ds]  p (r)dr r T 
(s) 

p (s)ds  p (s)  p (r) 
dr 

   

 
 

   
 

r s r     s s r 

ds 

 

r T 
1

 (s) 

 
 

From equation (1) we see that 

           
 

           
 

              
 

    ds 

 p (r) 

       
 

            
 

    

dr 

r          
 

              
 

and hence,                
 

   1           
 

 

ps (s)   pr (r) 

   

 

  

1, 0  s 1 

     
 

           
 

   

p
r 
(r)

 r T 


1 (s)       
 

 

 

Summary 

 

From the above analysis it is obvious that the transformation of equation 

 

(1) Converts the original image into a new image with uniform probability 
density function. This means that in the new image all intensities are present [look at 

property (iii) above] and with equal probabilities. The whole ranges of intensities from 
the absolute black to the absolute white are explored and the new image will definitely 

have higher contrast compared to the original image. 
 

Unfortunately, in a real life scenario we must deal with digital images. The discrete form 
of histogram equalisation is given by the relation 

 

 

k n j k  
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sk   T (rk )   

 

  pr (rj ), 0  rk  1, k  0,1,   , L 1 

 

 2 
 

j 0 N  j 0  
 

(2) The quantities in equation (2) have been defined in Section 2.2. To see results 
of histogram equalisation look at any introductory book on Image Processing.  

The improvement over the original image is quite evident after using the technique of 
histogram equalisation. The new histogram is not flat because of the discrete 

approximation of the probability density function with the histogram function. Note, 
however, that the grey levels of an image that has been subjected to histogram 

equalisation are spread out and always reach white. This process increases the dynamic 
range of grey levels and produces an increase in image contrast. 

 

 

2.4 Local histogram equalisation 

 

* Global histogram equalisation is suitable for overall enhancement. It is often 

necessary to enhance details over small areas. The number of pixels in these areas my 
have negligible influence on the computation of a global transformation, so the use of this 
type of transformation does not necessarily guarantee the desired local enhancement.  

* The solution is to devise transformation functions based on the grey level 

distribution – or other properties – in the neighbourhood of every pixel in the image. The 
histogram processing technique previously described is easily adaptable to local 

enhancement.  

* The procedure is to define a square or rectangular neighbourhood and move the 

centre of this area from pixel to pixel. At each location the histogram of the points in the 
neighbourhood is computed and a histogram equalisation transformation function is 

obtained.  

* This function is finally used to map the grey level of the pixel centred in the 

neighbourhood. The centre of the neighbourhood region is then moved to an adjacent 
pixel location and the procedure is repeated. Since only one new row or column of the 

neighbourhood changes during a pixel-to-pixel translation of the region, updating the 

histogram obtained in the previous location with the new data introduced at each motion 
step is possible quite easily.  

* This approach has obvious advantages over repeatedly computing the histogram 

over all pixels in the neighbourhood region each time the region is moved one pixel 
location. Another approach often used to reduce computation is to utilise non overlapping 
regions, but this methods usually produces an undesirable checkerboard effect. 

 

2.5 Histogram specification 
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 Suppose we want to specify a particular histogram shape (not necessarily 
uniform) which is capable of highlighting certain grey levels in the image. 

Let us suppose that: 

pr (r) is the original probability density function 

 

pz (z) is the desired probability density function 

 

 Suppose that histogram equalisation is first applied on the original image r

 

 

r 

s  T (r)   pr (w)dw 

0 
 

 Suppose that the desired  image  z  is available  and  histogram equalisation  is

applied as well 
 

z 

v  G(z)   pz (w)dw 

0 

ps (s) and pv (v) are both uniform densities and they can be considered as identical. Note 

that the final result of histogram equalisation is independent of the density inside the 

z  

integral. So in equation v  G(z)   pz (w)dw we can use the symbol s instead of v . 

0  

The  inverse  process  z  G 1 (s)  will  have  the  desired  probability density  function. 

Therefore, the process of histogram specification can be summarised in the following 
steps. 

 

(i) We take the original image and equalise its intensity using the 

r 

relation s  T (r)   pr (w)dw . 

0 
 

(ii) From the given probability density function pz (z) we specify the 

probability distribution function G(z) . 

(iii) We apply the inverse transformation function z  G1 (s)  G1T (r) 
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3. Spatial domain: Enhancement in the case of many realizations of an image of 

interest available 
 

3.1 Image averaging 

 

 Suppose that we have an image f (x, y) of size M  N pixels corrupted by noise n( x, 

y) , so we obtain a noisy image as follows. 

 

g(x, y)  f (x, y)  n(x, y) 

 

For the noise process n( x, y) the following assumptions are made. 

 

(i) The noise process n( x, y) is ergodic. 
 

 

It is zero mean, i.e., En(x, y) 
1 

M 1 N 1 
 

(ii) n(x, y)  0 
 

 
 

  MN x 0  y 0 
 

 

(ii) It is white, i.e., the autocorrelation function of the noise process defined as 
     1 M 1k N 1l   

 

R[k,l]  E{n(x, y)n(x  k, y  l)}  
   

 n(x, y)n(x  k, y  l) is zero, 
 

(M  k)(N  l) 

 

   x 0 y 0   
 

apart for the pair [k,l] [0,0] .         
 

Therefore,  Rk,l 

1   M 1k N 1l     
 

   

  n(x, y)n(x  k, y  l)  n
2

( x, y) (k,l) where 
 

(M  k)(N  l) 

 

 x 0 y 0     
 

 

 n
2

( x, y )  is the variance of noise. 

 

 

 Suppose now that we have L different noisy realisations of the same image 

f (x, y)  as  gi (x, y)  f (x, y)  ni (x, y) , i  0,1,   , L .  Each noise  process  ni (x, y) 
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satisfies the properties (i)-(iii) given above. Moreover,  2   2 . We form the 
 

         ni ( x, y)   
 

image 

 

(x, y) by averaging these L noisy images as follows: 

  
 

g   
 

     1  L 1  L   1  L   
 

 

g (x, y)  

 

 gi (x, y)  

 

( f (x, y)  ni (x, y))  f (x, y)  

  

ni (x, y) 

 

     
 

     L i 1 L i 1   L i 1   
 

Therefore, the new image is again a noisy realisation of the original image f (x, y)  with 

 

noise   n(x, y)  

 1  L                      
 

   

ni (x, y) . 

                   
 

                      
 

         L i 1                      
 

The mean value of the noise n(x, y) is found below.         
 

                 1 L    1  L         
 

           

 E{n(x, y)}  E{ 

  

ni (x, y)}  

  

 E{ni (x, y)} 0 

    
 

                   
 

                 L i 1    L i 1        
 

The variance of the noise n(x, y) is now found below.         
 

 

2 

  

2 

       

1 

L 

 

2    L     

 

2       
 

             1                
 


n( x, y )  


 
E{n 

 

(x, y)}  E 

 

 ni (x, y)  

 

 

 

E ni (x, y)  

 

 

     
 

   2       
 

             L i 1    L i 1             
 

                                  
 

 1 L  2     1   L   L        1  L  2  1 L   L 
 

 

  

E{(  ni 

 

(x, y))} 

 

E{( ( ni (x, y)n j (x, y))} 

 

  E{ni (x, y)} 

   

 E{ni (x, y)n j (x, y)} 

 

2  2 2 2 
 

  L i 1        L  i 1 j 1         L i 1     L i 1 j 1 
 

               i  j                   i  j 
 

 1 L     1                          
 

 

  


2  0  

   


2 

                     
 

2  

L 

                     
 

  L i 1                              
 

Therefore, we have shown that image averaging produces an image   (x, y) , corrupted by 
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g 
 

noise with variance less than the variance of the noise of the original noisy images. Note 

that if L  we have n
2

( x, y)  0 , the resulting noise is negligible. 

 

4. Spatial domain: Enhancement in the case of a single image  

4. 1Spatial masks 
 

Many image enhancement techniques are based on spatial operations performed 
on local neighborhoods of input pixels. 

 

The image is usually convolved with a finite impulse response filter called spatial mask. 

The use of spatial masks on a digital image is called spatial filtering. 

 

Suppose that we have an image f ( x, y) of size N 2 and we define a neighbourhood around 

each pixel. For example let this neighbourhood to be a rectangular window of size 

33 

 

w1 w2 w3 

w4 w5 w6 

w7 w8 w9 

 

 

 

If we replace each pixel by a weighted average of its neighbourhood pixels then the 

9 

response of the linear mask for the pixel  z5  is  wi zi  . We may repeat the same process 

 

i1 

 

for the whole image. 

 

 

4.2 Low pass and high pass spatial filtering 
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A 33 spatial mask operating on an image can produce (a) a smoothed version of 

the image (which contains the low frequencies) or (b) it can enhance the edges and 

suppress essentially the constant background information. The behaviour is basically 

dictated by the signs of the elements of the mask.  

Let us suppose that the mask has the following form 

 

a b c 

d 1 e 

f g h 

   

 

 

To be able to estimate the 

coefficients a,b, c, d, e, f , g, h 

 

 

effects of the above mask with relation to the sign of the , 
we will consider the equivalent one dimensional mask 

 

 

 

d 1 e 

 

Let us suppose that the above mask is applied to a signal x(n) . The output of this 

 

operation will  be a signal y(n) as 
 

y(n)  dx(n 1)  x(n)  ex(n 1) Y (z)  dz
1

 X (z)  X (z)  ezX (z)    
 

Y (z)  (dz
1

 1 ez) X (z)  
Y (z) 

 H (z)  dz1 1  ez . This is the transfer function of a 
 

X (z) 
 

       
 

 

system that produces the above input-output relationship. In the frequency domain we 

have H (e j )  d exp( j) 1 eexp( j) . 

The values of this transfer function at frequencies   0 and    are: 

H (e 
j

 )  d 1  e 
 

H (e 
j

 ) 

 

0 
 

 
 

 

d  1  e 

 

 
 

  

 
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If a lowpass filtering (smoothing) effect is required then the following condition must 
hold 

H (e 
j

 )   H (e 
j

 )   d  e  0 
 

  

0 
 

 
 

   
 

If a highpass filtering effect is required then 
 

H (e 
j

 ) 

 

 H (e 
j

 ) 

 

 d  e  0 

 

  
 

  

0 
 

 
 

   
 

 

The most popular masks for lowpass filtering are masks with all their coefficients 
positive and for highpass filtering, masks where the central pixel is positive and the 
surrounding pixels are negative or the other way round. 

 

 

4.3 Popular techniques for low pass spatial filtering 

 

4.3.1 Uniform filtering 

 

The most popular masks for low pass filtering are masks with all their coefficients 

positive and equal to each other as for example the mask shown below. Moreover, they 
sum up to 1 in order to maintain the mean of the image. 

 

  1 1 1 
 

1 
 

   
 

1 1 1 
 

9 

 

    
 

     
 

  1 1 1 
 

     
 

 

4.3.2 Gaussian filtering 

The two dimensional Gaussian mask has values that attempts to approximate the 
continuous function 

 1  x
2  y

2 
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G(x, y)  e   2 

 

2 
2
 

 

    
 

In theory, the Gaussian distribution is non-zero everywhere, which would require 
an infinitely large convolution kernel, but in practice it is effectively zero more than 
about three standard deviations from the mean, and so we can truncate the kernel at this 

point. The following shows a suitable integer-valued convolution kernel that 
approximates a Gaussian with a  of 1.0. 

 

4.3.3 Median filtering 

The median m of a set of values is the value that possesses the property that half 

the values in the set are less than m and half are greater than m . Median filtering is the 

operation that replaces each pixel by the median of the grey level in the neighbourhood of 

that pixel. 

Median filters are non linear filters because for two sequences x(n) and y(n) 

medianx(n)  y(n) medianx(n) mediany(n) 

Median filters are useful for removing isolated lines or points (pixels) while 

preserving spatial resolutions. They perform very well on images containing binary (salt 
and pepper) noise but perform poorly when the noise is Gaussian. Their performance is 

also poor when the number of noise pixels in the window is greater than or half the 

number of pixels in the window (why?) 

   1  4 7 4 1 
 

   4  16 26 16 4 
 

1  
 7  26 41 26 7 

 

273 
 

 

4 

 

16 26 16 4 

 

    
 

   1  4 7 4 1 
 

    Isolated    
 

 

 

0 0 0 0 0 0 
 

0 1 0 

Median filtering 

0 0 

 

0 
 

0 0 0 0 0 0 
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4.3.4 Directional smoothing 

 

To protect the edges from blurring while smoothing, a directional averaging filter 

can be useful. Spatial averages g(x, y :) are calculated in several selected directions (for 

example could be horizontal, vertical, main diagonals) 

 

g(x, y : )  

1 

 f (x  k, y  l) 
 

 
 

 N (k ,l ) W 
 

 

and a direction    is found such that f ( x, y)  g( x, y :   ) is minimum. (Note that W is 

   

the neighbourhood along the direction  and N  is the number of pixels within this 

neighbourhood). 

 

Then by replacing g( x, y :  ) with g( x, y :  ) we get the desired result. 

 

4.3.5 High Boost Filtering 

 

A high pass filtered image may be computed as the difference between the 
original image and a lowpass filtered version of that image as follows: 

(Highpass part of image)=(Original)-(Lowpass part of image) 

 

Multiplying the original image by an amplification factor denoted by A , yields the so 
called high boost filter: 

 

(Highboost image)= ( A) (Original)-(Lowpass)= ( A 1) (Original)+(Original)-

(Lowpass) 

= ( A 1) (Original)+(Highpass) 

 

The general process of subtracting a blurred image from an original as given in the first 
line is called unsharp masking. A possible mask that implements the above procedure 
could be the one illustrated below. 
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0 0  0      -1  -1 -1 
 

  

A 

   

 

1 

 

       
 

0  

 

0   -1  -1 -1 

 

 

9 

 

                
 

                 
 

0 0  0      -1  -1 -1 
 

                
 

               
 

     -1   -1    -1   
 

 

 1 

 

 

        
 

  

-1  9A 1 

  

-1  

 
 

 

9 

    
 

               
 

               
 

     -1   -1    -1   
 

                 
 

 

The high-boost filtered image looks more like the original with a degree of edge 
enhancement, depending on the value of A . 

 

4.4 Popular techniques for high pass spatial filtering. Edge detection using 

derivative filters 

 

4.4.1 About two dimensional high pass spatial filters 

 

An edge is the boundary between two regions with relatively distinct grey level 
properties. The idea underlying most edge detection techniques is the computation of a 

local derivative operator. The magnitude of the first derivative calculated within a 
neighbourhood around the pixel of interest, can be used to detect the presence of an edge 

in an image. 
 

The gradient of an image  f (x, y) at location (x, y) is a vector that consists of the partial 
 

derivatives of  f (x, y) as follows.     
 

    f (x, y)  
 

   

   

  
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x 

 
 

 f (x, y)  

   
 

    
 

    f (x, y)  
 

   

 

  

 

 

   

y 

 
 

      
 

The magnitude of this vector, generally referred to simply as the gradient f is 


 f (x.y) 

f (x, y)  mag( f (x, y))  

 x 

 

 

 

 
 

2  f 
 

   
 

 

  
 

  
 

 
 

(x, y) 2 1/ 2 
 

   
 

y 

 

 

 

 
 

   
 

 

Common practice is to approximate the gradient with absolute values which is simpler to 
implement as follows. 

f (x, y)  f (x, y)  f (x, y) 

 

x y 

 

(1) Consider a pixel of interest f (x, y)  z5 and a rectangular neighbourhood of size 

 

33  9 pixels (including the pixel of interest) as shown below. 

 

 

y 

 

 

z1 z2 z3 

   

z4 z5 z6 

   

z7 z8 z9 
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x 

4.4.2 Roberts operator 

 

Equation (1) can be approximated at point z5 in a number of ways. The simplest is 

to use the difference (z5  z8 ) in the x direction and (z5  z6 ) in the y direction. This 

 

approximation is known as the Roberts operator, and is expressed mathematically as 
follows. 

 

f  z5  z8   z5  z6 

 
 

(2) Another approach for approximating (1) is to use cross differences  

f  z5  z9   z6  z8 

 

(3) Equations (2), (3) can be implemented by using the following masks. The original 

image is convolved with both masks separately and the absolute values of the two outputs 
of the convolutions are added.  

 

1 0  1 -1 

     

-1 0  0 0 

     

 

Roberts operator 

     

1 0  0 1 

     

0 -1  -1 0 

     

 

Roberts operator 

 

4.4.3 Prewitt operator 
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Another approximation of equation (1) but using now a 3  3 mask is the 
following. 

 

f  (z7  z8  z9 )  (z1  z2  z3 )  (z3  z6  z9 )  (z1  z4  z7 ) 

 
 

(4) This approximation is known as the Prewitt operator. Equation (4) can be 
implemented by using the following masks. Again, the original image is convolved with 

both masks separately and the absolute values of the two outputs of the convolutions are 
added. 

 

 

 

 

 y 

 
 

-1 0 1 

   

-1 0 1 

   

-1 0 1 

   

 
 
 

-1 -1 -1 

   

0 0 0 

   

1 1 1 

   

 

Prewitt operator 

 

x 

4.4.4 Sobel operator. Definition and comparison with the Prewitt operator 

 

The most popular approximation of equation (1) but using a 3  3 mask is the 

following. 
 

f  (z7  2z8  z9 )  (z1  2z2  z3 )  (z3  2z6  z9 )  (z1  2z4  z7 ) 

 
 

(5) This approximation is known as the Sobel operator. 

 

 y 
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-1 0 1 

   

-2 0 2 

   

-1 0 1 

   

 
 
 

-1 -2 -1 

   

0 0 0 

   

1 2 1 
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Sobel operator 

 

x 

 

If we consider the left mask of the Sobel operator, this causes differentiation along the  y 

 

direction. A question that arises is the following: What is the effect caused by the same 
mask along the x direction? 

 

If we isolate the following part of the mask 

 

 

 

1 

 

2 

 

1 

 

 

and treat it as a one dimensional mask, we are interested in finding the effects of that 

mask. We will therefore, treat this mask as a one dimensional impulse response h[n] of 

the form 

 

1 

 

2 

h[n]  


1

 

 

 

n 1 

 

n  0 

 

n 1 
 

ot herwise 
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Or 

 

 

h[n] 

 

 

 

2 

 

1 

 

 

 

The above response applied to a signal x[ 

-1 0 1 n 

 2x[n]  x[n 1] 

 

 signal  y[n]  x[n  
 

or in z-transform domain  Y (z)  (z1  2  z) X (z) Y ( j)  2(cos 1) X ( j) . Therefore, 

h[n]is    the    impulse  response    of    a    system   with    transfer    function 
 

H ( j)  2(cos 1)  

 

H ( j) 

 

shown in the figure below for [0, ] . This is a lowpass filter 

 

  
 

      

 

type of response. Therefore, we can claim that the Sobel operator has a differentiation 
effect along one of the two directions and a smoothing effect along the other direction. 

 

 

4        

3.5        

3        

2.5        

2        

1.5        

1        
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0.5        

0        

0 0.5 1 1.5 2 2.5 3 3.5 
 

 

 

The same analysis for the Prewitt operator would give Y (z)  (z1 1 z) X (z) 

 

 Y ( j)  (2cos 1) X ( j)  H ( j)  2cos 1  shown in the figure below for [0, ] . 
 

This response looks ―strange‖ since it decreases up to the point 2cos 1  0  cos 

0.5 and then starts increasing. 

 

 

 

 

 

 

3        

2.5        

2        

1.5        

1        

0.5        

0        

0 0.5 1 1.5 2 2.5 3 3.5 
 

 

 

Based on the above analysis it is stated in the literature that the Sobel operator have the 
advantage of providing both a differencing a smoothing effect while Prewitt does not. 
However, if you implement both operators you cannot see any visual difference. 

 

4.4.5 Laplacian operator 
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The Laplacian of a 2-D function  f ( x, y) is a second order derivative defined as 

 2 f (x, y)  
2

 
f

 
(x,

 
y)

  
2

 
f
 
(x,

 
y)


x
2
y

2


In practice it can be also implemented using a 3x3 mask as follows (why?) 

 


2
 f  4z5  (z2  z4  z6  z8 ) 

 

The main disadvantage of the Laplacian operator is that it produces double edges (why?). 

 

1.2 Frequency domain methods 

 

(Remaining topics clarification please refer Gonzalez-digital image processing) 

 

Let  g( x, y)  be a desired image formed by the convolution of an image f ( x, y) 

 

and a linear, position invariant operator h( x, y) , that is: 

 

g(x, y)  h(x, y)  f (x, y) 

 

The following frequency relationship holds: 

G(u,v)  H (u, v)F(u, v) 

 

We can select H (u, v) so that the desired image 

 

g(x, y) 
1H (u, v)F(u, v) 

 

exhibits some highlighted features of f ( x, y) . For instance, edges in f ( x, y) can be 

accentuated by using a function H (u, v) that emphasises the high frequency components 

of F(u, v) . 
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UNIT-III 

 

IMAGE RESTORATION 

 

Model of Image Degradation/restoration process – Noise models – Inverse filtering - 

Least mean square filtering – Constrained least mean square filtering – Blind image 

restoration – Pseudo inverse – Singular value decomposition. 

 

 

1.1 What is image restoration? 

 

Image Restoration refers to a class of methods that aim to remove or reduce the 
degradations that have occurred while the digital image was being obtained. All natural images 
when displayed have gone through some sort of degradation: 

 during display mode

 during acquisition mode, or

 during processing mode 
The degradations may be due to

 sensor noise

 blur due to camera misfocus

 relative object-camera motion

 random atmospheric turbulence

 others 

In most of the existing image restoration methods we assume that the degradation process can be 
described using a mathematical model. 

 

1.2 How well can we do? 

 

Depends on how much we know about 

 the original image

 the degradations
(how accurate our models are)

 

1.3 Image restoration and image enhancement differences 
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 Image restoration differs from image enhancement in that the latter is concerned more 
with accentuation or extraction of image features rather than restoration of degradations.

 Image restoration problems can be quantified precisely, whereas enhancement criteria are 
difficult to represent mathematically.

 

1.4 Image observation models 

 

Typical parts of an imaging system: image formation system, a detector and a recorder. A 
general model for such a system could be: 

y(i, j)  rw(i, j) n(i, j) 

w(i, j)  H f (i, j) 

 h(i, j, i, j) f (i, j)didj 

n(i, j)  gr[w(i, j)]n1(i, j)  n2 (i, j) 

 

where y(i, j) is the degraded image, f (i, j) is the original image and h(i, j,i, j) is an operator that 

represents the degradation process, for example a blurring process. Functions g and r 
 

are generally nonlinear, and represent the characteristics of detector/recording mechanisms. n(i, j) 
is the additive noise, which has an image-dependent random component 

 

grH[ f (i, j)]n1(i, j) and an image-independent random component n2 (i, j) . 

 

1.5 Detector and recorder models 

 

The response of image detectors and recorders in general is nonlinear. An example is the 
response of image scanners 

 

r(i, j)  w(i, j)


 

where  and  are device-dependent constants and w(i, j) is the input blurred image. 

 

For photofilms 

r(i, j)   log10 w(i, j)  r0 

where  is called the gamma of the film, w(i, j) is the incident light intensity and r(i, j) is called 

the optical density. A film is called positive if it has negative  . 

 

I. Noise models 
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The general noise model 

n(i, j)  gr[w(i, j)]n1(i, j)  n2 (i, j) 

 

is applicable in many situations. Example, in photoelectronic systems we may have g(x)   x . 

Therefore, 

 
 

n(i, j)  w(i,j)n1(i,j)n2(i,j) 

 

where n1 and n2 are zero-mean, mutually independent, Gaussian white noise fields. The term n2 

(i, j) may be referred as thermal noise. In the case of films there is no thermal noise and the noise 

model is 

 

n(i, j)  log10w(i,j)ron1(i,j) 

 
 

Because  of  the  signal-dependent  term  in  the  noise  model,  restoration  algorithms  are  quite 

 

difficult. Often w(i, j) is replaced by its spatial average, w , giving 

n(i, j)  grw n1 (i, j)  n2 (i, j) 

 

which makes n(i, j) a Gaussian white noise random field. A lineal observation model for 

photoelectronic devices is 

y(i, j)  w(i, j)  wn1(i,j)n2(i,j) 

 

For photographic films with  1 

 

y(i, j) log10 w(i, j)  r0  an1 (x, y) 

 

where r0 , a  are constants and r0  can be ignored. 

 

The light intensity associated with the observed optical density y(i, j) is I (i, j ) 

10


 
y(i,

 
j)

  w(i, j)10
an

1 
(i,

 
j

 
)

  w(i, j)n(i, j) 

 

 

where n(i, j) ˆ 10
an

1 
(i,

 
j
 
)
  now appears as multiplicative noise having a log-normal distribution. 
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1.7 A general model of a simplified digital image degradation process 

 

A simplified version for the image restoration process model 

is y(i, j)  Hf (i, j) n(i, j) 

 

where 

 

y(i, j) the degraded image 

 

f (i, j) the original image 

 

H an operator that represents the degradation process  

n(i, j) the external noise which is assumed to be image-independent 

 

 

1.8 Possible classification of restoration methods 

 

Restoration methods could be classified as follows: 

 

 deterministic: we work with sample by sample processing of the observed (degraded) 
image

 stochastic:we work with the statistics of the images involved in the process



 non-blind:the degradation process H  is known

 blind:the degradation process H  is unknown

 semi-blind: the degradation process H could be considered partly known 

 

From the viewpoint of implementation: 

 

 direct

 iterative

 recursive






2. Linear position invariant degradation models  
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2.1 Definition 

 

We again consider the general degradation model 

y(i, j)  Hf (i, j) n(i, j) 

 

If we ignore the presence of the external noise n(i, j) we get 

y(i, j)  Hf (i, j) 

H  is linear if 

Hk1 f1 (i, j)  k2 f2 (i, j) k1Hf1 (i, j) k2 Hf2 (i, j) 

 

• is position (or space) invariant if  

From now on we will deal with linear, space invariant type of degradations. 

In a real life problem many types of degradations can be approximated by linear, position 

invariant processes. 

 

Advantage: Extensive tools of linear system theory become available. 

 

Disadvantage: In some real life problems nonlinear and space variant models would be more 
appropriate for the description of the degradation phenomenon. 

 

2.2 Typical linear position invariant degradation models 

 

• Motion blur. It occurs when there is relative motion between the object and the 
camera during exposure.  

 

 1   L  L 
 

 

 

, if  

 

 i  

 
 

 

2 2 

 

h(i)  L    
 

0,  ot herwise  
 

       
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• Atmospheric turbulence. It is due to random variations in the reflective index 
of the medium between the object and the imaging system and it occurs in the 
imaging of astronomical objects.  

 

  i2  j2  
 

h(i, j)  K exp  

  

 
 

 

2 

 

  

2 

 
 

    
 

 

• Uniform out of focus blur 
 

 

 1 

       
 

   2  2  
 

 

 

, if   i 

 

 j 

 

 R 
 

   
 

h(i, j) R        
 

0,  ot herwise  
 

         
 

 
• Uniform 2-D blur  

 

 1 

,   if  

L 

 i, j  

L 
 

 

   
 

 

2 2 

 

h(i, j) (L)
2    

 

 

otherwise 

  
 

0,   
 

 …
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2.3 Some characteristic metrics for degradation models 

 

 Blurred Signal-to-Noise Ratio (BSNR): a metric that describes the degradation model. 

 
  1  

 

2  
 

   

 

 

 

g(i, j)  g (i, j)  

 

  
 

BSNR  10log10 

 MN i   j  
 

 

    

 

 

 

n
2 

 

   
 

      
 

g(i, j)  y(i, j)  n(i, j) 

     
 

       
 

 

g(i, j)  E{g(i, j)} 

 

 n
2
 : variance of additive noise

 Improvement in SNR (ISNR): validates the performance of the image restoration 
algorithm.

 

 

 

 

   f (i, j)  y(i, j)2 


 
 

   i j   
 

  

ISNR 10log10  

   

 

 

   

ˆ 

2 
 

  

 

  

 

 

  f (i, j)  f (i, j) 
 

   i j   
 

       
 

where 

ˆ 

is the restored image. 

    
 

f (i, j)     
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Both BSNR and ISNR can only be used for simulation with artificial data. 

 

 

2.4 One dimensional discrete degradation model. Circular convolution 

 

 

Suppose we have a one-dimensional discrete signal f (i) of size A samples f (0), f (1), , f ( 

A 1) , which is due to a degradation process. The degradation can be modeled by a one-

dimensional discrete impulse response h(i) of size B samples. If we assume that the 

degradation  is  a  causal  function  we  have  the  samples h(0),h(1), , h(B 1) .We  form  the 

 

extended versions of f (i)  and  h(i) , both of size  M  A  B 1 and periodic with period  M . 

 

These can be denoted as fe (i) and he (i) . For a time invariant degradation process we obtain the 

discrete convolution formulation as follows 

 M 1   

ye (i)   fe (m)he (i  m)  ne (i) 

 m0   

Using matrix notation we can write the following form   

 y  Hf  n   

  fe (0)   

    

 f  
f
e 
(1)  , 

    

    

  fe (M 1)  

 

 he (0) he (1) 
 

 h (1) h (0) 
 

H    e  e 
 

(M M)    
 

  

(M 1)   he (M  2) 

 

 
h

e 
 

At the moment we decide to ignore the external 
noise we have that 
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he (M 1)  
 

h (M  2)

 
 

e   
 

   
 

he (0) 

 
 

 
 

n . Because h  is periodic with period M 
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 he (0) he (M 1) he (1)  
 

 h (1) h (0) h (2)

 
 

H    e  e e   
 

(M M)       
 

  

(M 1) he (M  2) he (0) 

 
 

 
h

e  
 

We define (k ) to be 

 

(k )  he (0)  he (M 1) exp( j 
2

M


 k )  he (M  2) exp( j 
2
M


 2k )  

 

 h (1) exp[ j 
2

 (M 1)k], k  0,1, , M 1 

e M 

 

 

Because exp[ j 
2

M


 (M  i)k]  exp( j 
2

M


 ik ) we have that 

 

 

(k)  MH (k) 

 

H (k) is the discrete Fourier transform of he (i) . 

 

I define w(k ) to be 

 

1 

2 

  
 

   
 

exp( j 
 

k )  
 

M 

 

w(k )     
 

   

 

 

 

2 

 
 

exp[ j 

 

(M 1)k ] 
 

 

M 

 

   
 

It can be seen that 

Hw(k)  (k)w(k) 
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This implies that (k ) is an eigenvalue of the matrix H and w(k ) is its corresponding 

eigenvector. 

We form a matrix w whose columns are the eigenvectors of the matrix H , that is to say 
 

W  w(0) w(1) w(M 1)   
 

  2   1   1  2  
 

w(k, i)  exp j 

 

ki and w 

 

(k, i)  

 

exp j 

 

ki 
 

    
 

  M      M  M    
 

We can then diagonalize the matrix H as follows        
 

 H  WDW
-1

  D  W
-1

HW   
 

where            
 

  (0)   0      
 

    

(1) 

       
 

D  

 

     

 

  
 

  

 

    
 

          
 

            
 

  
0    (M 1)   

 

Obviously D is a diagonal matrix and 

D(k, k)  (k)  MH (k) 

 

If we go back to the degradation model we can write 

 

•  Hf  y  WDW
-1

f  W
-1

 y  DW
1

f 

 Y (k)  MH (k)F(k), k  0,1, , M 1  

 0,1, , M 1 are the M  sample 

 

y(i), h(i), f (i), respectively. So by choosing (k ) and w(k ) 

 
 

discrete Fourier transforms of 

 

as above and assuming that  he (i) 

 

is periodic, we start with a matrix problem and end up with M  scalar problems. 
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2.5 Two dimensional discrete degradation model. Circular convolution 

 

 

 

 

Suppose we have a two-dimensional discrete signal f (i, j) of size  A  B samples which 

 

is due to a degradation process. The degradation can now be modeled by a two dimensional 

discrete impulse response h(i, j) of size C  D samples. We form the extended versions of 

 

f (i, j) and h(i, j) , both of size  M  N , where  M  A  C 1 and  N  B  D 1 , and periodic 

 

with period M  N .  These can be  denoted as fe (i, j) and  he (i, j) .  For  a  space  invariant 
 

degradation process we obtain        
 

      M 1 N 1      
 

  ye (i, j)   fe (m, n)he (i  m, j  n)  ne (i, j) 
 

      m0 n0      
 

Using matrix notation we can write the following form    
 

      y  Hf  n    
 

where f and y  are MN  dimensional column vectors that represent the lexicographic ordering 
 

of images fe (i, j) and he (i, j) respectively.      
 

      H0 H
M1

H
1   

 

            
 

      H  
H

1 
H

0  H
2   

 

            
 

       

H
M2 

   
 

      
H

M1 
H

0   
 

     he ( j,0) he ( j, N 1) he ( j,1)  
 

  

H 

 

 


h ( j,1) h ( j,0) h ( j,2)


 

 

  

j 

 e  e  

 

e  
 

          
 

      ( j, N 1) he ( j, N  2) he ( j,0)  
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     
h

e  
 

The analysis of the diagonalisation of H is a straightforward extension of the one-dimensional 
case. 

 

In that case we end up with the following set of M  N  scalar problems. 

Y (u, v)  MNH (u, v)F(u, v)(N(u, v)) 

 

•  0,1,   , M 1, v  0,1,   , N 1  

 

 

In the general case we may have two functions f (i), A  i  B and h(i), C  i  D , where  A, C 

 

can be also negative (in that case the functions are non-causal). For the periodic convolution we 
have to extend the functions from both sides knowing that the convolution is 

g(i)  h(i)  f (i), A  C  i  B  D . 

 

 

• Direct deterministic approaches to restoration 

 

3.1 Inverse filtering 

The objective is to minimize 

 

J (f ) n(f )
 2  
y  Hf 

 2
 

 

We set the first derivative of the cost function equal to zero 

J
 
(f

 
)
  0 2HT (y  Hf)  0 

f 

 

f  (H
T

H)
-1

 H
T

 y 

 

If M  N  and H
1

  exists then 

f  H
-1

 y 

 

According to the previous analysis if H (and therefore H-1 ) is block circulant the above 
problem can be solved as a set of M  N scalar problems as follows 
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H 

 

(u, v)Y (u, v) 

 

H 

 

(u, v)Y (u, v) 

 
 

F (u, v)  

 

 f (i, j) 
1
  

 

 

 

           

    

2 

    

2 

 

   

H (u, v) 

 

 

  

H (u, v) 

 

 

 

       
 

      

 

     

 

 

           
 

 

3.1.1 Computational issues concerning inverse filtering 

 

• Suppose first that the additive noise n(i, j) is negligible. A problem arises if H (u, v) 

becomes very small or zero for some point (u, v) or for a whole region in the (u, v) 
 

plane. In that region inverse filtering cannot be applied. Note that in most real 
applications H (u, v) drops off rapidly as a function of distance from the origin. The 

 

solution is that if these points are known they can be neglected in the computation of F(u, 

v) . 

 

(II) In the presence of external noise we have that          
 

  ˆ 

 

H 

 (u, v)Y (u, v)  N (u, v) 

 

 

 

F (u, v) 

                  
 

      

H (u, v) 

 

2 

     
 

                 
 

  H  (u, v)Y (u, v)  H  (u, v)N (u, v)  
 

   

H (u, v) 

 

2  

 

  

 

H (u, v) 

 

2  

   
 

          
 

   ˆ            N (u, v)    
 

   

F (u, v)  F (u, v)  

      
 

    H (u, v)    
 

 If  H (u, v)  becomes very small, the term N (u, v)   dominates the result. The solution is 
 

 

again to carry out the restoration process in a limited neighborhood about the origin 
where H (u, v) is not very small. This procedure is called pseudoinverse filtering. In 

 
that case we set 
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ˆ 

F (u, v) 

 

 
 

 H  (u, v)Y (u, v) 
 

 

     
 

  

H (u, v) 

 

2 

 

   
 

 

    
 

    
 

     
 

0     
 

     
 

     
 

     
 

 

 

 

• (u, v)  T 

H (u, v)  T 

 

The threshold T 
is defined by the 
user. In general, 
the noise may 
very well 
possess large 
components at 
high frequencies 
(u, v) , while H 
(u, v) and Y (u, 
v) normally will 
be 

 

dominated by low frequency 

components. 

 

3.2 Constrained least squares 

(CLS) restoration 

 

It refers to a very large 

number of restoration 

algorithms. 

 

The problem can be formulated as 

follows. 

minimize 

 

 

J (f ) n(f )
 2  
y  Hf 

 2
 

 

subject to 

 

Cf
 2  
  

 

where C f is a high pass filtered version of the image. 
The idea behind the above constraint is that the 
highpass version of the image contains a 
considerably large amount of noise! Algorithms of 
the above type can be handled using optimization 
techniques. Constrained least squares (CLS) 
restoration can be formulated by choosing an f to 
minimize the Lagrangian 

miny  Hf 
 2 
Cf

 2  

 

Typical choice for C is the 2-D Laplacian operator given by 

 0.00  0.25 0.00  

C  

 0.25 1.00  0.25


 

     

 0.00  0.25 0.00  

     

 represents  either  a  Lagrange  multiplier  or  a  fixed  parameter  
known  as  regularisation 

parameter and it controls the relative contribution between the term  

y  Hf 
 2

 and the term 
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C f
 2 

. The 

m

i

n

i

m

i

z

a

t

i

o

n

 

o

f

 

t

h

e

 

a

b

o

v

e

 

l

e

a

d

s

 

t

o

 

t

h

e

 

f

o

l

l

o

w

i

n

g estimate 

for the 

original 

image f  

HTH 

CTC1 

HT y 

 

3.2.1 Computational issues concerning the CLS method 

 

3. Choice of   

The problem of the choice of  has been 

attempted in a large number of studies and 

different techniques have been proposed. One 

possible choice is based on a set theoretic 

approach: a restored image is approximated 

by an image which lies in the intersection of 

the two ellipsoids defined by 

Q  {f | 

 

 

 

y  Hf 

 

   

 

2  E 
2
 } and 

 

    
 

f|y                   
 

 

Q   {f | 

 

 

 

Cf 

 

 

 

2   2 } 

 

     
 

 f          
 

 

The center of one of the ellipsoids which 

bounds the intersection of Qf |y and Qf , is 

given by the equation 

 

f  HTH CTC1 HT y 

 

with   (E / )2
 . Another problem is then the 

choice of E 
2
 and  2 . One choice could be 

 
1


BSNR

 

 

Comments 
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With larger 

values of  , and 

thus more 

regularisation, 
the restored 

image tends to 

have more 

ringing. With 

smaller values 

of  , the 

restored image 

tends to have 

more amplified 

noise effects. 

The variance 

and bias of the 

error image in 

frequency 

domain are 

 

 

 

Var() 

 

 

Bias() 

 

 

 
 

M  N 

  

H (u, v) 

 

2  

 

   
 

n
2
 

 

        
 

         

 

 

  

2 
 

   

2 2 

 

u0v0 H (u, v) C(u, v) 
 

 

 

 

 

n
2
 

 

F (u, v) 

 

2  2 

  

C(u, v) 

 

4 

 

     
 

M 1 N 1                
 

u0 v0 

         

 H (u, v) 

 

2 
 

 

C(u, v) 

 

2 2 
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The minimum MSE is encountered close to the intersection of the above functions. 

A good choice of  is one that gives the best compromise between the variance and bias 

of the error image. 

 

 

 Iterative deterministic approaches to restoration 

 

They refer to a large class of methods that have been investigated extensively over the 
last decades. They possess the following advantages. 

 

 There is no need to explicitly implement the inverse of an operator. The restoration process 
is monitored as it progresses. Termination of the algorithm may take place before 
convergence.

 The effects of noise can be controlled in each iteration.

 The algorithms used can be spatially adaptive.

 The problem specifications are very flexible with respect to the type of degradation. 
Iterative techniques can be applied in cases of spatially varying or nonlinear degradations 
or in cases where the type of degradation is completely unknown (blind restoration). 

In general, iterative restoration refers to any technique that attempts to minimize a function of the 
form 

 

M (f ) 

 

using an updating rule for the partially restored image. 

 

4.1 Least squares iteration 

 

In that case we seek for a solution that minimizes the function 

 

M (f ) y  Hf 
 2

 

 

A necessary condition for M (f ) to have a minimum is that its gradient with respect to f is equal 

to zero. This gradient is given below 

M
 
(f

 
)
 f M (f )  2(HT y  HT Hf) 

 

f 

 

and by using the steepest descent type of optimization we can formulate an iterative rule as 
follows: 
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f 

0 

 H
T

 y   
 

    
 

fk1  fk    

M (fk ) 

 fk   HT (y  Hfk )  HT y  (I  HT H)fk 
 

 
 

   fk 
 

 

4.2 Constrained least squares iteration 

 

In this method we attempt to solve the problem of constrained restoration 
iteratively. As already mentioned the following functional is minimized 

 

M (f ,) y  Hf 
 2 
Cf

 2
 

 

The necessary condition for a minimum is that the gradient of M (f ,) is equal to zero. That 

gradient is 

 

(f ) f M (f ,)  2[(HT H  CTC)f  HT y] 

 

The initial estimate and the updating rule for obtaining the restored image are now given by 

 

f0  H
T

 y 

 

fk1  fk  [H
T

y  (H
T

H C
T

C)fk ] 

 

It can be proved that the above iteration (known as Iterative CLS or Tikhonov-Miller Method) 
converges if 

 

0    

 2  
 

 

 

 

 
 

  
 

    
 

   max  
 

 

where max  is the maximum eigenvalue of the matrix 

 

(H
T

H C
T

C) 
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If the matrices H and C are block-circulant the iteration can be implemented in the frequency 
domain. 

 

4.3 Projection onto convex sets (POCS) 

 

The set-based approach described previously can be generalized so that any number of 
prior constraints can be imposed as long as the constraint sets are closed convex. 

 

If the constraint sets have a non-empty intersection, then a solution that belongs to the 
intersection set can be found by the method of POCS. Any solution in the intersection set is 

consistent with the a priori constraints and therefore it is a feasible solution. Let Q1,Q2 , ,Qm be 

closed  convex  sets  in a  finite  dimensional  vector space,  with  P , P ,   , P their  respective 
 

    12 m 
 

projectors. The iterative procedure       
 

f 

k1 

 P P ,   P f 

k 

  
 

 1  2 m   
 

converges to a vector that belongs to the intersection of the sets Qi ,i 1,2, , m , for any starting 

vector f 

0 

.  An  iteration  of  the  form  f 

k1 

 P P f 

k 

can be applied  in the problem  described 
 

   1  2  
 

previously, where we seek for an image which lies in the intersection of the two ellipsoids 
defined by 

 

Qf|y   {f | y  Hf 
 2  
 E 2 } and Qf   {f | Cf

 2  
  2 } 

The respective projections P1f and P2f are defined by 

P f  f  λ I  λ HTH1 HT (y  Hf) 

1 1 1 

P2f  [I  λ2 I  λ2CTC1 CTC]f 

 

4.4 Spatially adaptive iteration 

 

The functional to be minimized takes the form 

 

M (f ,) y  Hf 
 2 

W1  Cf
 2 

W2 
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where 

 

y  Hf 
 2 

W1    (y  Hf)
T W1 (y  Hf) 

 

Cf
 2 

W2    (Cf)
T W2 (Cf) 

 

W1,W2 are diagonal matrices, the choice of which can be justified in various ways. The entries 

in both matrices are non-negative values and less than or equal to unity. In that case 

 

(f ) f M (f ,)  (HT W1H  CT W2C)f  HT W1y 

 

A more specific case is 

 

M (f ,) y  Hf 
 2 
Cf

 2 
W 

 

where the weighting matrix is incorporated only in the regularization term. This method is known 

as weighted regularised image restoration. The entries in matrix W will be chosen so that the 

high-pass filter is only effective in the areas of low activity and a very little smoothing takes place 

in the edge areas. 

 

4.5 Robust functionals 

 

Robust functionals allow for the efficient supression of a wide variety of noise processes 
and permit the reconstruction of sharper edges than their quadratic counterparts. We are seeking 
to minimize 

M (f ,)  Rn (y  Hf) RxCf 

 

Rn (), Rx () are referred to as residual and stabilizing functionals respectively. 

 

4.6 Computational issues concerning iterative techniques 

 

 Convergence  

The contraction mapping theorem usually serves as a basis for establishing 
convergence of iterative algorithms. According to it iteration 

f0   0 

fk1  fk  (fk ) (fk ) 
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converges to a unique fixed point f 

 , that is, a point such that (f 


 )  f 


 , for any 

initial vector, if the operator or transformation (f ) is a contraction. This means that for 

any two vectors f1 and f2 in the domain of (f ) the following relation holds 

(f1)(f2) f1  f2  

 

with   1 and    any norm. The above condition is norm dependent. 

 

v Rate of convergence  

The termination criterion most frequently used compares the normalized change in 
energy at each iteration to a threshold such as 

 

f
k 1 


 
f

k 

 

 

 

2 6 

 

   
 

         

 10 

 

  

f
k 

 

2 

    
 

        
 

 

g Stochastic approaches to restoration 
 

5.1 Wiener estimator (stochastic regularisation) 

 

 

The image restoration problem can be viewed as a system identification problem as follows: 

 

f (i, j) 

 

y(i, j) 

 ˆ 
 

 

W 

f (i, j) 
 

 H  
 

     
 

 

n(i, j) 

 

 

The objective is to minimize the following function 

      ˆ T ˆ         
 

      E{(f  f )   (f  f )}         
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To do so the following conditions should hold:            
 

ˆ                  
 

(i)   E{f}  E{f}  E{f}  WE{y}             
 

(ii) The error  must    be   orthogonal   to   the   observation about the  mean 
 

ˆ    T 

}  0 

            
 

E{(f  f )(y  E{y})              
 

From (i) and (ii) we have that              
 

E{(Wy  f )(y  E{y})
T

 }  0  E{(Wy  E{f}  WE{y}  f )(y  E{y})
T

}  0   
 

 

~ 

E{[W(y  E{y})  (f  E{f})](y  E{y})
T

}  0        
 

~ 

 f  E{f} then 

            
 

If y  y  E{y} and f 

~~T 

  

~~T 

      
 

~ ~ ~T    ~~T  ~~T 

}  WR~~   R~~ 
 

E{(Wy  f )y }  0  E{Wyy }  E{fy  }  WE{yy }  E{fy  
 

             yy   fy 
 

If the original and the degraded image are both zero mean then R~~   R 

yy 

and R~~   R 

fy 

. In that 
 

          yy fy   
 

case we have that WRyy  Rfy . If we go back to the degradation model and find the 

autocorrelation matrix of the degraded image then we get that 

 

J  Hf  n  y
T

  f 
T

H
T

  n
T  

E{yyT }  HRff H
T  Rnn  Ryy 

 

E{fyT }  Rff H
T  Rfy 

 

From the above we get the following results 

 

g  Rfy Ryy
1  Rff H

T (HRff H
T  Rnn )1 

ˆ T 

(HRff H 

T 

 Rnn ) 

1 

y 

 

f  Rff H   
 

Note that knowledge of Rff  and Rnn  is assumed. In frequency domain 

W (u, v)  

    S 

ff 
(u, v)H  (u, v)    

 

                
 

                   

 

S ff (u, v) 

 

H (u, v) 

 

2 

 

 S nn (u, v) 
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ˆ     S ff (u, v)H (u, v)      
 

F (u, v)            

2  S 

    Y (u, v) 
 

 S 
ff 

(u, v) H (u, v) 
nn 

(u, v) 
 

                    

 

5.1.1 Computational issues 

 

The noise variance has to be known, otherwise it is estimated from a flat region of the 
observed image. In practical cases where a single copy of the degraded image is available, it is 

quite common to use S yy (u, v) as an estimate of S ff (u, v) . This is very often a poor estimate. 

 

5.1.2 Wiener smoothing filter 

 

In the absence of any blur, H (u, v) 1 and 

 

W (u, v)  

S ff (u, v) 

 

(SNR) 
 

   

S ff (u, v)  Snn (u, v) (SNR) 1 

 

  
 

h (SNR) 1 W (u, v) 1  

i (SNR) 1 W (u,v)  (SNR)  

(SNR) is high in low spatial frequencies and low in high spatial frequencies so W (u, v) can be 
 

implemented with a lowpass (smoothing) filter. 
 

5.1.3   Relation with inverse filtering   
 

If Snn (u, v)  0 W (u, v)  

 1 

which is the inverse filter 

 

   

H (u, v) 

 

    
 

    1  
H (u, v)  0 

 

     
 

  
 H (u, v) 

 

      
 

If Snn (u, v)  0  lim W (u, v)     
 

 Sn n0  0  H (u, v)  0 
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 

 
 

     
 

      
 

which is the pseudoinverse filter. 

 

5.1.4 Iterative Wiener filters 

 

They refer to a class of iterative procedures that successively use the Wiener filtered signal 
as an improved prototype to update the covariance estimates of the original image as follows. 

Step 0: Initial estimate of 
R

ff    
 

 R 

ff 
(0)  R 

yy 
 E{yyT }    

 

          

Step 1: Construct the i 
th

 restoration filter   
 

 W(i1)R  

ff 

(i)HT (HR  (i)HT  R 

nn 

)1 
 

       ff  
 

Step 2: Obtain the (i 1)
th

  estimate of the restored image 
 

 ˆ          
 

 f (i 1)  W(i 1)y    
 

Step 3: Use 

ˆ        
 

f (i 1) to compute an improved estimate of Rff  given by 
 

      ˆ ˆ T 

(i 1)} 

  
 

 Rff (i 1)  E{f (i 1)f   
 

Step 4: Increase i and repeat steps 1,2,3,4.  
 

 

 

6. Pseudo inverse – Singular value decomposition 

 

(Remaining topics clarification please refer Gonzalez-digital image processing) 
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UNIT IV 

 

IMAGE COMPRESSION 

 

Lossless compression: Variable length coding – LZW coding – Bit plane coding-

predictive coding-DPCM. 

 

Lossy Compression: Transform coding – Wavelet coding – Basics of Image 

 

compression standards: JPEG, MPEG, Basics of Vector quantization. 

 

 

 

COMPRESSION FUNDAMENTALS 

 

Introduction 

 

In recent years, there have been significant advancements in algorithms and architectures for the 

processing of image, video, and audio signals. These advancements have proceeded along several 

directions. On the algorithmic front, new techniques have led to the development of robust 

methods to reduce the size of the image, video, or audio data. Such methods are extremely vital in 

many applications that manipulate and store digital data. Informally, we refer to the process of 

size reduction as a compression process. We will define this process in a more formal way later. 

On the architecture front, it is now feasible to put sophisticated compression processes on a 

relatively low-cost single chip; this has spurred a great deal of activity in developing multimedia 

systems for the large consumer market. 

One of the exciting prospects of such advancements is that multimedia information comprising 

image, video, and audio has the potential to become just another data type. This usually implies 

that multimedia information will be digitally encoded so that it can be manipulated, stored, and 

transmitted along with other digital data types. For such data usage to be pervasive, it is essential 

that the data encoding is standard across different platforms and applications. This will foster 

widespread development of applications and will also promote interoperability among systems 

from different vendors. Furthermore, standardisation can lead to the development of cost-
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effective implementations, which in turn will promote the widespread use of multimedia 

information. This is the primary motivation behind the emergence of image and video 

compression standards. 

 

Background 

Compression is a process intended to yield a compact digital representation of a signal. In the 

literature, the terms source coding, data compression, bandwidth compression, and signal 

compression are all used to refer to the process of compression. In the cases where the signal is 

defined as an image, a video stream, or an audio signal, the generic problem of compression is to 

minimise the bit rate of their digital representation. There are many applications that benefit when 

image, video, and audio signals are available in compressed form. Without compression, most 

of these applications would not be feasible! 

Example 1: Let us consider facsimile image transmission. In most facsimile machines, the 

document is scanned and digitised. Typically, an 8.5x11 inches page is scanned 

at 200 dpi; thus, resulting in 3.74 Mbits. Transmitting this data over a low-cost 

14.4 kbits/s modem would require 5.62 minutes. With compression, the 

transmission time can be reduced to 17 seconds. This results in substantial 

savings in transmission costs. 

Example 2: Let us consider a video-based CD-ROM application. Full-motion video, at 30 

fps and a 720 x 480 resolution, generates data at 20.736 Mbytes/s. At this rate, 

only 31 seconds of video can be stored on a 650 MByte CD-ROM. Compression 

technology can increase the storage capacity to 74 minutes, for VHS-grade video 

quality. 

 

Image, video, and audio signals are amenable to compression due to the factors below. 

g There is considerable statistical redundancy in the signal. 
 

 Within a single image or a single video frame, there exists significant correlation among 

neighbour samples. This correlation is referred to as spatial correlation. 
 

 For data acquired from multiple sensors (such as satellite images), there exists significant 

correlation amongst samples from these sensors. This correlation is referred to as spectral 

correlation. 
 

 For temporal data (such as video), there is significant correlation amongst samples in 

different segments of time. This is referred to as temporal correlation. 
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 There is considerable information in the signal that is irrelevant from a perceptual 

point of view. 

 

 Some data tends to have high-level features that are redundant across space and time; 
 

that is, the data is of a fractal nature. 

 

For a given application, compression schemes may exploit any one or all of the above factors to 

achieve the desired compression data rate. 

There are many applications that benefit from data compression technology. Table 1.1 lists a 

representative set of such applications for image, video, and audio data, as well as typical data 

rates of the corresponding compressed bit streams. Typical data rates for the uncompressed bit 

streams are also shown. 
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Application Data Rate  

    

 Uncompressed Compressed  

    

Voice 64 kbps 2-4 kbps  

8 ksamples/s, 8 bits/sample    

    

Slow motion video (10fps) 5.07 Mbps 8-16 kbps  

framesize 176x120, 8bits/pixel    

    

Audio conference 64 kbps 16-64 kbps  

8 ksamples/s, 8 bits/sample    

    

Video conference (15fps) 30.41 Mbps 64-768 kbps  

framesize 352x240, 8bits/pixel    

    

Digital audio 1.5 Mbps 1.28-1.5 Mbps  

44.1 ksamples/s, 16 bits/sample    

    

Video file transfer (15fps) 30.41 Mbps 384 kbps  

framesize 352x240, 8bits/pixel    

    

Digital   video   on   CD-ROM 60.83 Mbps 1.5-4 Mbps  

(30fps)    

framesize 352x240, 8bits/pixel    

    

Broadcast video (30fps) 248.83 Mbps 3-8 Mbps  

framesize 720x480, 8bits/pixel    
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HDTV (59.94 fps) 1.33 Gbps 20 Mbps 

 

framesize 1280x720, 8bits/pixel 

 

Table 1.1: Applications for image, video, and audio compression. 

 

In the following figure, a systems view of the compression process is depicted. 

    ENCODER 
 

        
 

Digital image, Video Source    Channel 
 

and Audio 

 

 

Coder 

   

Coder 

 

    
 

      
 

        
 

 

 

 

 

 

    DECODER 
 

        
 

Digital image, Video Source    Channel 
 

and Audio 

  

Decoder 

   

Decoder 

 

     
 

      
 

        
 

 

 

 

 

Figure 1.1 Generic compression system 
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The core of the encoder is the source coder. The source coder performs the compression process 

by reducing the input data rate to a level that can be supported by the storage or transmission 

medium. The bit rate output of the encoder is measured in bits per sample or bits per second. For 

image or video data, a pixel is the basic element; thus, bits per sample is also referred to as bits 

per pixel or bits per pel. In the literature, the term compression ratio, denoted as cr , is also used 

instead of bit rate to characterise the capability of the compression system. An intuitive definition 

 

of cr  is 

c 

r 

 source coder input size 
 

  

source coder output size 

 

   
 

 

This definition is somewhat ambiguous and depends on the data type and the specific 

compression method that is employed. For a still-image, size could refer to the bits needed to 

represent the entire image. For video, size could refer to the bits needed to represent one frame of 

video. Many compression methods for video do not process each frame of video, hence, a more 

commonly used notion for size is the bits needed to represent one second of video. 

 

In a practical system, the source coder is usually followed by a second level of coding: the 

channel coder (Figure 1.1). The channel coder translates the compressed bit stream into a signal 

suitable for either storage or transmission. In most systems, source coding and channel coding are 

distinct processes. In recent years, methods to perform combined source and channel coding have 

also been developed. Note that, in order to reconstruct the image, video, or audio signal, one 

needs to reverse the processes of channel coding and source coding. This is usually performed at 

the decoder. 

 

From a system design viewpoint, one can restate the compression problem as a bit rate 

minimisation problem, where several constraints may have to be met, including the following: 

 

 Specified level of signal quality. This constraint is usually applied at the decoder.


 Implementation complexity. This constraint is often applied at the decoder, and in some 

instances at both the encoder and the decoder.


 Communication delay. This constraint refers to the end to end delay, and is measured from
 

the start of encoding a sample to the complete decoding of that sample. 
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Note that, these constraints have different importance in different applications. For example, in a 

two-way teleconferencing system, the communication delay might be the major constraint, 

whereas, in a television broadcasting system, signal quality and decoder complexity might be the 

main constraints. 

 

Lossless versus lossy compression 

 

Lossless compression 

 

In many applications, the decoder has to reconstruct without any loss the original data. For a 

lossless compression process, the reconstructed data and the original data must be identical in 

value for each and every data sample. This is also referred to as a reversible process. In lossless 

compression, for a specific application, the choice of a compression method involves a trade-off 

along the three dimensions depicted in Figure 1.2; that is, coding efficiency, coding complexity, 

and coding delay. 

 

Coding Efficiency 

 

This is usually measured in bits per sample or bits per second (bps). Coding efficiency is usually 

limited by the information content or entropy of the source. In intuitive terms, the entropy of a 

source X provides a measure for the "randomness" of X. From a compression theory point of 

view, sources with large entropy are more difficult to compress (for example, random noise is 

very hard to compress). 

Coding Complexity 

 

The complexity of a compression process is analogous to the computational effort needed to 

implement the encoder and decoder functions. The computational effort is usually measured in 

terms of memory requirements and number of arithmetic operations. The operations count is 

characterised by the term millions of operations per second and is often referred to as MOPS. 

Here, by operation, we imply a basic arithmetic operation that is supported by the computational 

engine. In the compression literature, the term MIPS (millions of instructions per second) is 

sometimes used. This is specific to a computational engine's architecture; thus, in this text we 

refer to coding complexity in terms of MOPS. In some applications, such as portable devices, 

coding complexity may be characterised by the power requirements of a hardware 

implementation. 
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Coding Delay 

 

A complex compression process often leads to increased coding delays at the encoder and the 

decoder. Coding delays can be alleviated by increasing the processing power of the computational 

engine; however, this may be impractical in environments where there is a power constraint or 

when the underlying computational engine cannot be improved. Furthermore, in many 

applications, coding delays have to be constrained; for example, in interactive communications. 

The need to constrain the coding delay often forces the compression system designer to use a less 

sophisticated algorithm for the compression processes. 

 

From this discussion, it can be concluded that these trade-offs in coding complexity, delay, and 

efficiency are usually limited to a small set of choices along these axes. In a subsequent section, 

we will briefly describe the trade-offs within the context of specific lossless compression 

methods. 

 

 

 

 

Coding Efficiency Coding Delay 

 

 

Coder Complexity 

-Compression Ratio? 

 

-Memory requirements? 

 

-Power requirements? 

 

-Operations per second? 

 

 

Figure 1.2 Trade-offs in lossless compression. 
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Lossy compression 

 

The majority of the applications in image or video data processing do not require that the 

reconstructed data and the original data are identical in value. Thus, some amount of loss is 

permitted in the reconstructed data. A compression process that results in an imperfect 

reconstruction is referred to as a lossy compression process. This compression process is 

irreversible. In practice, most irreversible compression processes degrade rapidly the signal 

quality when they are repeatedly applied on previously decompressed data. 

 

The choice of a specific lossy compression method involves trade-offs along the four dimensions 

shown in Figure 1.3. Due to the additional degree of freedom, namely, in the signal quality, a 

lossy compression process can yield higher compression ratios than a lossless compression 

scheme. 

 

Signal Quality This term is often used to characterise the signal at the output of the decoder. 

 

There is no universally accepted measure for signal quality. 

 

One measure that is often cited is the signal to noise ratio SNR , which can be expressed as 

 encoder input signal energy
SNR   10log10

noise signal energy
 

 

The noise signal energy is defined as the energy measured for a hypothetical signal that is the 

difference between the encoder input signal and the decoder output signal. Note that, SNR as 

defined here is given in decibels (dB). In the case of images or video, PSNR (peak signal-to-noise 

ratio) is used instead of SNR . The calculations are essentially the same as in the case of SNR , 

however, in the numerator, instead of using the encoder input signal one uses a hypothetical 

signal with a signal strength of 255 (the maximum decimal value of an unsigned 8-bit number, 

such as in a pixel). 

 

High SNR or PSNR values do not always correspond to signals with perceptually high quality. 

Another measure of signal quality is the mean opinion score, where the performance of a 
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compression process is characterised by the subjective quality of the decoded signal. For instance, 

a five point scale such as very annoying, annoying, slightly annoying, perceptible but not 

annoying, and imperceptible might be used to characterise the impairments in the decoder output. 

 

In either lossless or lossy compression schemes, the quality of the input data affects the 

compression ratio. For instance, acquisition noise, data sampling timing errors, and even the 

analogue-to-digital conversion process affects the signal quality and reduces the spatial and 

temporal correlation. Some compression schemes are quite sensitive to the loss in correlation and 

may yield significantly worse compression in the presence of noise. 

 

Signal Quality 

 

-Bit error probability? 

 

-SNR? 

 

-Mean opinion score? 

 

 

 

 

 

 

 

 

 

 

 

Coding Efficiency Coding Delay 

 

-Compression Ratio? 

 

 

Coder Complexity 
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-Memory requirements? 

 

-Power requirements? 

 

-Operations per second? 

 

 

Figure 1.3 Trade-offs in lossy compression. 

 

Issues in compression method selection 

 

 

In this chapter, we have introduced some fundamental concepts related to image, video, and audio 

compression. When choosing a specific compression method, one should consider the following 

issues: 

 Lossless or lossy. This is usually dictated by the coding efficiency requirements.


 Coding efficiency. Even in a lossy compression process, the desirable coding efficiency 

might not be achievable. This is especially the case when there are specific constraints on 

output signal quality.


 Variability in coding efficiency. In some applications, large variations in coding efficiency 

among different data sets may not be acceptable.


 Resilience to transmission errors. Some compression methods are more robust to 

transmission errors than others. If retransmissions are not permitted, then this requirement 

may impact on the overall encoder- decoder design.


 Complexity trade-offs. In most implementations, it is important to keep the overall encoder-

decoder complexity low. However, certain applications may require only a low decoding 

complexity.


 Nature of degradations in decoder output. Lossy compression methods introduce artifacts in 

the decoded signal. The nature of artifacts depends on the compression method that is 

employed. The degree to which these artifacts are judged also varies from application to 

application. In communication systems, there is often an interplay between the transmission 
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errors and the coding artifacts introduced by the coder. Thus, it is important to consider all 

types of error in a system design.


 Data representation. In many applications, there is a need to support two decoding phases. In 

the first phase, decoding is performed to derive an intelligible signal; this is the case in data 

browsing. In the second phase, decoding is performed to derive a higher quality signal. One 

can generalise this notion to suggest that some applications require a hierarchical 

representation of the data. In the compression context, we refer to such compression schemes 

as scalable compression methods. The notion of scalability has been adopted in the 

compression standards.


 Multiple usage of the encoding-decoding tandem. In many applications, such as video 

editing, there is a need to perform multiple encode-decode operations using results from a 

previous encode-decode operation. This is not an issue for lossless compression; however, for 

lossy schemes, resilience to multiple encoding-decoding cycles is essential.


 Interplay with other data modalities, such as audio and video. In a system where several data 

modalities have to be supported, the compression methods for each modality should have 

some common elements. For instance, in an interactive videophone system, the audio 

compression method should have a frame structure that is consistent with the video frame

structure. Otherwise, there will be unnecessary requirements on buffers at the decoder and a 

reduced tolerance to timing errors. 

 

 Interworking with other systems. In a mass-market environment, there will be multiple data 

modalities and multiple compression systems. In such an environment, transcoding from one 

compression method to another may be needed. For instance, video editing might be done on 

a frame by frame basis; hence, a compression method that does not exploit temporal 

redundancies might be used here. After video editing, there might be a need to broadcast this 

video. In this case, temporal redundancies can be exploited to achieve a higher coding 

efficiency. In such a scenario, it is important to select compression methods that support 

transcoding from one compressed stream format to another. Interworking is important in 

many communications environments as well.

 

THE SOURCE CODER 

In this course we are interested in exploring various compression techniques referring to the 

source coder only, where the image compression takes place. 
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A general procedure for image data compression is shown in the following block diagram (Figure 

1.4). This is the source coder of the previous diagram! 

 

 

original image data 

 

 

1 decomposition  
 

 transformation  
 

 feature 

. 

 

 

selection 
 

  
 

 2  
 

 quantisation in finite number 
 

 of levels  
 

 3  
 

 symbol encoding 
 

  Huffman 
 

 

 

 

 

 

 

could be:     predictive coding 
transform based coding 

 

fractal 

 

 

Compressed image 

 

ELEMENTS OF INFORMATION THEORY 

 Any information generating process can be viewed as a source that emits a sequence of


symbols chosen from a finite alphabet (for example, text: ASCII symbols; n -bit images: 2
n
 

symbols).



 Simplest form of an information source: discrete memoryless source (DMS). Successive 

symbols produced by such a source are statistically independent.

 A DMS is completely specified by the source alphabet S {s1, s2 , , sn } and the associated 

probabilities {p1 , p2 , , pn } .

 Self Information:
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I (s )  log 
1  log  p 

 

i 2  pi 2 i 

 

 the occurrence of a less probable event provides more information 
 

 the information of independent events taken as a single event equals the sum of 
the information 

 

 Average Information per Symbol or Entropy of a DMS:
 

n n 

H (S)   pi I (si )  pi log2  pi  bits/symbol 

i1 i1 

 

 Interpretation of Entropy:


 Average amount of information per symbol provided by the source (definition) 
 

 Average amount of information per symbol an observer needs to spend to remove the 

uncertainty in the source 
 

 N  th extention of the DMS: Given a DMS of size  n , group the source into blocks of  N
 

symbols. Each block can now be considered as a single source symbol generated by a source 

S 
N

 with alphabet size n 
N

 . In this case 

H (S 
N

 )  N  H (s) 

 

 

Noiseless Source Coding Theorem 

 

Let S be a source with alphabet size n and entropy H (S) . Consider coding blocks of N source 

symbols into binary codewords. For any   0 , it is possible by choosing N large enough to 

construct a code in such a way that the average number of bits per original source symbol lavg 

satisfies 

 

H (s)  lavg   H (s)   
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METHODS FOR LOSSLESS COMPRESSION 

 

1 PRELIMINARIES 

Lossless compression refers to compression methods for which the original uncompressed data 

set can be recovered exactly from the compressed stream. The need for lossless compression 

arises from the fact that many applications, such as the compression of digitized medical data, 

require that no loss be introduced from the compression method. Bitonal image transmission via a 

facsimile device also imposes such requirements. In recent years, several compression standards 

have been developed for the lossless compression of such images. We discuss these standards 

later. In general, even when lossy compression is allowed, the overall compression scheme may 

be a combination of a lossy compression process followed by a lossless compression process. 

Various image, video, and audio compression standards follow this model, and several of the 

lossless compression schemes used in these standards are described in this section. 

The general model of a lossless compression scheme is as depicted in the following figure. 

 

 Input Symbol     
 

       

Codeword 

 

       
 

     

Symbol- 
 

      
 

     to-  
 

 Delay   Codewor  
 

        
 

 

 

 

 

Probability 

 

Model 

 

Figure 1.1: A generic model for lossless compression 
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Given an input set of symbols, a modeler generates an estimate of the probability distribution of 

the input symbols. This probability model is then used to map symbols into codewords. The 

combination of the probability modeling and the symbol-to-codeword mapping functions is 

usually referred to as entropy coding. The key idea of entropy coding is to use short codewords 

for symbols that occur with high probability and long codewords for symbols that occur with low 

probability. 

 

The probability model can be derived either from the input data or from a priori assumptions 

about the data. Note that, for decodability, the same model must also be generated by the decoder. 

Thus, if the model is dynamically estimated from the input data, causality constraints require a 

delay function between the input and the modeler. If the model is derived from a priori 

assumptions, then the delay block is not required; furthermore, the model function need not have 

access to the input symbols. The probability model does not have to be very accurate, but the 

more accurate it is, the better the compression will be. Note that, compression is not always 

guaranteed. If the probability model is wildly inaccurate, then the output size may even expand. 

However, even then the original input can be recovered without any loss. 

 

Decompression is performed by reversing the flow of operations shown in the above Figure 1.1. 

 

This decompression process is usually referred to as entropy decoding. 

 

Message-to-Symbol Partitioning 

As noted before, entropy coding is performed on a symbol by symbol basis. Appropriate 

partitioning of the input messages into symbols is very important for efficient coding. For 

example, typical images have sizes from 256 256 pixels to 6400064000 pixels. One could view 

one instance of a 256 256 multi-frame image as a single message, 256
2
  65536 long; however, 

it is very difficult to provide probability models for such long symbols. In practice, we typically 

view any image as a string of symbols. In the case of a 256 256 image, if we assume that each 

pixel takes values between zero and 255, then this image can be viewed as a sequence of symbols 

drawn from the alphabet 0,1,2, ,255. The modeling problem now reduces to finding a good 

probability model for the 256 symbols in this alphabet. 

 

For some images, one might partition the data set even further. For instance, if we have an image 

with 12 bits per pixel, then this image can be viewed as a sequence of symbols drawn from the 

alphabet 0,1, ,4095. Hardware and/or software implementations of the lossless compression 

methods may require that data be processed in 8, 16, 32, or 64  bit units. Thus, one approach 
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might be to take the stream of 12  bit pixels and artificially view it as a sequence of 8  bit 

symbols. In this case, we have reduced the alphabet size. This reduction compromises the 

achievable compression ratio; however, the data are matched to the processing capabilities of the 

computing element. 

 

Other data partitions are also possible; for instance, one may view the data as a stream of 24  bit 

symbols. This approach may result in higher compression since we are combining two pixels into 

one symbol. In general, the partitioning of the data into blocks, where a block is composed of 

several input units, may result in higher compression ratios, but also increases the coding 

complexity. 

 

Differential Coding 

Another preprocessing technique that improves the compression ratio is differential coding. 

Differential coding skews the symbol statistics so that the resulting distribution is more amenable 

to compression. Image data tend to have strong inter-pixel correlation. If, say, the pixels in the 

 

image are in the order x1 , x2 , x3 ,   , xN , then instead of compressing these pixels, one might 

process  the  sequence of differentials   yi   xi   xi1 ,  where  i  1,2,   , N ,  and  x0   0 .  In 

compression terminology, yi   is referred to as the prediction residual of  xi . The notion of 

 

compressing the prediction residual instead of xi is used in all the image and video compression 

standards. For images, a typical probability distribution for xi and the resulting distribution for yi 

are shown in Figure 1.2. 

 

Let symbol si have a probability of occurrence pi . From coding theory, the ideal symbol-to-

codeword mapping function will produce a codeword requiring log2 (1/ pi ) bits. A distribution 

close to uniform for pi ( pi  1/ 255) , such as the one shown in the left plot of Figure 1.2, will 

result in codewords that on the average require eight bits; thus, no compression is achieved. On 

the other hand, for a skewed probability distribution, such as the one shown in the right plot of 

Figure 1.2, the symbol-to-codeword mapping function can on the average yield codewords 

requiring less than eight bits per symbol and thereby achieve compression. 

 

We will understand these concepts better in the following Huffman encoding section. 
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Preprocessing 

 

 

 

Figure 1.2: Typical distribution of pixel values for xi and yi . Here, the 

pixel values are shown on the horizontal axis and the corresponding probability 

of occurrence is shown on the vertical axis. 

2 HUFFMAN ENCODING 

 

In 1952, D. A. Huffman developed a code construction method that can be used to perform 

lossless compression. In Huffman coding, the modeling and the symbol-to-codeword mapping 

functions of Figure 1.1 are combined into a single process. As discussed earlier, the input data 

are partitioned into a sequence of symbols so as to facilitate the modeling process. In most 

image and video compression applications, the size of the alphabet composing these symbols is 

restricted to at most 64000 symbols. The Huffman code construction procedure evolves along the 

following parts: 

 

 Order the symbols according to their probabilities. 
 

For Huffman code construction, the frequency of occurrence of each symbol must be known 

a priori. In practice, the frequency of occurrence can be estimated from a training set of data 

that is representative of the data to be compressed in a lossless manner. If, say, the alphabet 

is composed of N distinct symbols s1, s2 , s3 , , sN and the probabilities of occurrence are p1, 

p2 , p3 , , pN , then the symbols are rearranged so that p1  p2  p3  pN . 

 

 Apply a contraction process to the two symbols with the smallest probabilities.  

Suppose the two symbols are sN 1  and sN . We replace these two symbols by a hypothetical 

 

symbol, say, H N 1  (sN 1, sN )  that has a probability of occurrence pN 1  pN . Thus, the 

 

 
s1 , s2 , s3 ,   , sN 
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new set of symbols has N 1 members s1 , s2 , s3 , , sN 2 , H N 1 . 

 

 

7. We repeat the previous part 2 until the final set has only one member. 
 

 

The recursive procedure in part 2 can be viewed as the construction of a binary tree, since at each 

 

step we  are  merging  two  symbols.  At  the  end  of  the  recursion  process  all  the  symbols 

 

will be leaf nodes of this tree. The codeword for each symbol si is obtained by traversing 
the binary tree from its root to the leaf node corresponding to si . 

 

We illustrate the code construction process with the following example depicted in Figure 2.1. 

The input data to be compressed is composed of symbols in the alphabet k, l, u, w, e, r, ? . First we 

 

sort the probabilities. In Step 1, we merge the two symbols k and w to form the new symbol (k, w) 

. The probability of occurrence for the new symbol is the sum of the probabilities of occurrence 

for k and w . We sort the probabilities again and perform the merge on the pair of 

least frequently occurring symbols which are now the symbols (k, w) and  ? . We repeat this 

 

process through Step 6. By visualizing this process as a binary tree as shown in this figure and 

traversing the process from the bottom of the tree to the top, one can determine the codewords for 

each symbol. For example, to reach the symbol u from the root of the tree, one traverses nodes 

that were assigned the bits 1,0 and 0 . Thus, the codeword for u is 100. 

 

w k step 1 

 

 

0.05 0.05 

 

7. (1) 
 

(k, w) ? 
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step 2 

 

(0) (1) 

 

0.1 0.1 

 

1 [(k, w),?]  

 

step 3 

 

 step 4   (0) (1)  
 

r 

      
 

l 0.1  0.2 
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     {[(k, w),?],u}   e 
 

(0) (1) 

   

(0)step 5 (1) 

 
 

    
 

          
 

0.2  (l, r) 0.2 0.3 {{[(k, w),?],u}, e}  0.3 
 

  

step 6 (1) 

  
 

 (0)    
 

         
 

0.4      0.6 
 

 

 

Generate Codewords 

 

 

 

  Step 1  Step 2   Step 3  Step 4   Step 5 Step 6 

                  

k 0.05 e 0.3  e 0.3   e 0.3  e 0.3    (l, r) 0.4 {{[(k, w), ?],u},e} 0.6 

                    

l 0.2 l 0.2  l 0.2   l 0.2  {[(k, w), ?],u} 0.3  e 0.3 (l, r) 0.4 

                    

u 0.1 r 0.2  r 0.2   r 0.2  l 0.2    {[(k, w),?],u} 0.3  

                 

w 0.05 u 0.1  u 0.1   [(k, w),?] 0.2  r 0.2       

                 

e 0.3 ? 0.1  ? 0.1   u 0.1          

                    

r 0.2 k 0.05  (k, w) 0.1            

                   

? 0.1 w 0.05                 
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     Symbol    Probability    Codeword   

                   

      k     0.05     10101   

                    

      l     0.2      01   

                    

      u     0.1      100   

                   

      w     0.05     10100   

                    

      e     0.3      11   

                    

      r     0.2      00   

                   

     ?     0.1      1011   

                     

 

Figure 2.1: An example of Huffman codeword construction 

 

 

 

 

In this example, the average codeword length is 2.6 bits per symbol. In general, the average 

codeword length is defined as 

 

 

lavg   li pi 

 

(2.1) where li is the codeword length (in bits) for the codeword corresponding to symbol si . The 

average codeword length is a measure of the compression ratio. Since our alphabet has seven 

symbols, a fixed-length coder would require at least three bits per codeword. In this example, we 

have reduced the representation from three bits per symbol to 2.6 bits per symbol; thus, the 
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corresponding compression ratio can be stated as 3/2.6=1.15. For the lossless compression of 

typical image or video data, compression ratios in excess of two are hard to come by. 

 

Properties of Huffman Codes 

 

 

According to Shannon, the entropy of a source S  is defined as 

 

H (s)  n   pi log2 (1/ pi ) 

 

(2.2) where, as before, pi denotes the probability that symbol si from S will occur. From 

information theory, if the symbols are distinct, then the average number of bits needed to encode 

them is always bounded from below by their entropy. For example, for the alphabet used in the 

previous section, the average length is bounded by 2.6 bits per symbol. It can be shown that 

Huffman codewords satisfy the constraints n  lavg  n 1; that is, the average length is very close 

to the optimum. A tighter bound is n  lavg  p  0.086, where p is the probability of the most 

frequently occurring symbol. The equality is achieved when all symbol probabilities are 

inverse powers of two. 

 

The Huffman code table construction process, as was described here, is referred to as a bottom-

up method, since we perform the contraction process on the two least frequently occurring 

symbols. In recent years, top-down construction methods have also been published in the 

literature. 

The code construction process has a complexity of O(N log2 N ) . With presorting of the input 

symbol probabilities, code construction methods with complexity O(N ) are presently known. 

 

In the example, one can observe that no codeword is a prefix for another codeword. Such a code 

is referred to as a prefix-condition code. Huffman codes satisfy always the prefix-condition. 

 

Due to the prefix-condition property, Huffman codes are uniquely decodable. Not every 

uniquely decodable code satisfies the prefix-condition. A code such as 0, 01, 011, 0111 does not 

satisfy the prefix-condition, since zero is a prefix for all of the codewords; however, every 

codeword is uniquely decodable, since a zero signifies the start of a new codeword. 
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If we have a binary representation for the codewords, the complement of this representation is 

also a valid set of Huffman codewords. The choice of using the codeword set or the 

corresponding complement set depends on the application. For instance, if the Huffman 

codewords are to be transmitted over a noisy channel where the probability of error of a one 

being received as a zero is higher than the probability of error of a zero being received as a one, 

then one would choose the codeword set for which the bit zero has a higher probability of 

occurrence. This will improve the performance of the Huffman coder in this noisy channel. 

 

In Huffman coding, fixed-length input symbols are mapped into variable-length codewords. Since 

there are no fixed-size boundaries between codewords, if some of the bits in the compressed 

stream are received incorrectly or if they are not received at all due to dropouts, all the data are 

lost. This potential loss can be prevented by using special markers within the compressed bit 

stream to designate the start or end of a compressed stream packet. 

 

Extended Huffman Codes 

 

 

 

 

 

Suppose we have three symbols with probabilities as shown in the following table. The Huffman 

codeword for each symbol is also shown. 

 

Symbol Probability Code 

   

s1 0.8 0 

   

s2 0.02 11 

   

s3 0.18 10 

   

 

For the above set of symbols we have: 
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Entropy H (s)  n  0.816 bits/symbol. 

 

Average number of bits per symbol lavg   1.2 bits/symbol. 

 

Redundancy lavg  n  1.2  0.816  0.384 or 
lavg

n


 
n

 %  47% of entropy. 

 

 

For this particular example Huffman code gives a poor compression. This is because one of the 

symbols ( s1 ) has significantly higher probability of occurrence compared to the others. Suppose 

 

 

 

we merge the symbols in groups of two symbols. In the next table the extended alphabet and 

corresponding probabilities and Huffman codewords are shown. 

 

Symbol Probability Code 

   

s1s1 0.64 0 

   

s1s2 0.016 10101 

   

s1s3 0.144 11 

   

s2 s1 0.016 101000 

   

s2 s2 0.0004 10100101 

   

s2 s3 0.0036 1010011 

   

s3s1 0.144 100 
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s3s2 0.0036 10100100 

   

s3s3 0.0324 1011 

   

 

Table: The extended alphabet and corresponding Huffman code 

 

 

For the new extended alphabet we have 

 

lavg   1.7516 bits/new symbol or lavg   0.8758 bits/original symbol. 

 

Redundancy lavg  n  0.8758 0.816  0.0598 or 
lavg

  


 
n

 %  7% of entropy. 

 

n 

 

We see that by coding the extended alphabet a significantly better compression is achieved. The 

above process is called Extended Huffman Coding. 

 

Main Limitations of Huffman Coding 

 

 To achieve the entropy of a DMS (Discrete Memoryless SourCe), the symbol probabilities 

should be negative powers of 2 (i.e. log pi is an integer).


 Can not assign fractional codelengths.


 Can not efficiently adapt to changing source statistics.
 

 

 To improve coding efficiency H (s) / lavg we can encode the symbols of an extended source. 

However number of entries in Huffman table grows exponentially with block size.

There are also cases where even the extended Huffman does not work. Suppose we have the 

following case:
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Symbol Probability Code 

   

s1 0.95 0 

   

s2 0.02 11 

   

s3 0.03 10 

   

 

Table: Huffman code for three symbol alphabet 

 

 

Entropy H (s)  n  0.335 bits/symbol. 

 

Average number of bits per symbol lavg   1.05 bits/symbol. 

 

Redundancy lavg  n  1.05 0.335 0.715 or 

lavg   n 

%  213% of entropy! 
 

 
 

 n 
 

 

Suppose we merge the symbols in groups of two symbols. In the next table the extended 

alphabet and corresponding probabilities and Huffman codewords are shown. 

 

Symbol Probability Code 

   

s1s1 0.9025 0 

   

s1s2 0.019 111 

   

s1s3 0.0285 100 



128 
 

   

s2 s1 0.019 1101 

   

s2 s2 0.0004 110011 

   

s2 s3 0.0006 110001 

   

s3s1 0.0285 101 

   

s3 s2 0.0006 110010 

   

s3s3 0.0009 110000 

   

 

Table: The extended alphabet and corresponding Huffman code 

 

 

For the new extended alphabet we have 

 

lavg   1.222 bits/new symbol or lavg   0.611 bits/original symbol. 

 

Redundancy  
lavg

  


 
n

 %  72% of entropy. 

 

n 

 

For this example it is proven that redundancy drops to acceptable values by merging the 

original symbols in groups of 8 symbols! and in that case the alphabet size is 6561 new 

symbols! 

 

Arithmetic coding solves many limitations of Huffman coding. Arithmetic coding is out of the 

scope of this course. 

3 HUFFMAN DECODING 
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The Huffman encoding process is relatively straightforward. The symbol-to-codeword mapping 

table provided by the modeler is used to generate the codewords for each input symbol. On the 

other hand, the Huffman decoding process is somewhat more complex. 

Bit-Serial Decoding 

Let us assume that the binary coding tree is also available to the decoder. In practice, this tree can 

be reconstructed from the symbol-to-codeword mapping table that is known to both the encoder 

and the decoder. The decoding process consists of the following steps: 

4. Read the input compressed stream bit by bit and traverse the tree until a leaf node is reached. 
 

5. As each bit in the input stream is used, it is discarded. When the leaf node is reached, the 

Huffman decoder outputs the symbol at the leaf node. This completes the decoding for this 

symbol. 

We repeat these steps until all of the input is consumed. For the example discussed in the 

previous section, since the longest codeword is five bits and the shortest codeword is two bits, the 

decoding bit rate is not the same for all symbols. Hence, this scheme has a fixed input bit rate but 

a variable output symbol rate. 

 

 

Lookup-Table-Based Decoding 

Lookup-table-based methods yield a constant decoding symbol rate. The lookup table is 

constructed at the decoder from the symbol-to-codeword mapping table. If the longest codeword 

in this table is L bits, then a 2 
L
 entry lookup table is needed. Recall the first example that we 

presented in that section where L  5 . Specifically, the lookup table construction for each symbol 

 

si  is as follows: 

 Let ci be the codeword that corresponds to symbol si . Assume that ci has li bits. We form an 

L  bit address in which the first li bits are ci and the remaining L  li bits take on all


possible combinations of zero and one. Thus, for the symbol si there will be 2
Ll

i addresses.

 At each entry we form the two-tuple (si , li ) .
 

Decoding using the lookup-table approach is relatively easy: 

8. From the compressed input bit stream, we read in L bits into a buffer. 
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9. We use the L  bit word in the buffer as an address into the lookup table and obtain the 

corresponding symbol, say sk . Let the codeword length be lk . We have now decoded one 

symbol. 
 

10. We discard the first lk bits from the buffer and we append to the buffer, the next lk bits from 

the input, so that the buffer has again L bits. 

11. We repeat Steps 2 and 3 until all of the symbols have been decoded. 
 

The primary advantages of lookup-table-based decoding are that it is fast and that the decoding 

rate is constant for all symbols, regardless of the corresponding codeword length. However, the 

input bit rate is now variable. For image or video data, the longest codeword could be around 16 

to 20 bits. Thus, in some applications, the lookup table approach may be impractical due to space 

constraints.    Variants on the basic theme of lookup-table-based decoding include using 

hierarchical lookup tables and combinations of lookup table and bit-by-bit decoding.  

There are codeword construction methods that facilitate lookup-table-

based decoding by    constraining the maximum codeword length to a fixed-size L , but these are 

out of the scope of this course. 

 

 

UNIT V 

 

IMAGE SEGMENTATION AND REPRESENTATION 

 

Edge detection – Thresholding - Region Based segmentation – Boundary 

representation: chair codes- Polygonal approximation – Boundary segments – 

boundary descriptors: Simple descriptors-Fourier descriptors - Regional descriptors – 

Simple descriptors- Texture 

 

 

 

Edge detection 

Edge detection is a fundamental tool in image processing and computer vision, 
particularly in the areas of feature detection and feature extraction, which aim at 
identifying points in a digital image at which the image brightness changes sharply or 
more formally has discontinuities. 
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Motivations 

Canny edge detection applied to a photograph 

The purpose of detecting sharp changes in image brightness is to capture important 

events and changes in properties of the world. It can be shown that under rather general 
assumptions for an image formation model, discontinuities in image brightness are likely 

to correspond to: 

 

 discontinuities in depth,

 discontinuities in surface orientation,

 changes in material properties and

 variations in scene illumination.

 

In the ideal case, the result of applying an edge detector to an image may lead to a set of 

connected curves that indicate the boundaries of objects, the boundaries of surface 

markings as well as curves that correspond to discontinuities in surface orientation. Thus, 

applying an edge detection algorithm to an image may significantly reduce the amount of 

data to be processed and may therefore filter out information that may be regarded as less 

relevant, while preserving the important structural properties of an image. If the edge 

detection step is successful, the subsequent task of interpreting the information contents 

in the original image may therefore be substantially simplified. However, it is not always 

possible to obtain such ideal edges from real life images of moderate complexity. Edges 

extracted from non-trivial images are often hampered by fragmentation, meaning that the 

edge curves are not connected, missing edge segments as well as false edges not 

corresponding to interesting phenomena in the image – thus complicating the subsequent 

task of interpreting the image data
.
 

 

Edge detection is one of the fundamental steps in image processing, image analysis, 

image pattern recognition, and computer vision techniques. During recent years, 

however, substantial (and successful) research has also been made on computer vision 

methods that do not explicitly rely on edge detection as a pre-processing step. 

 

Edge properties 

 

The edges extracted from a two-dimensional image of a three-dimensional scene can be 

classified as either viewpoint dependent or viewpoint independent. A viewpoint 

independent edge typically reflects inherent properties of the three-dimensional objects, 

such as surface markings and surface shape. A viewpoint dependent edge may change as 

the viewpoint changes, and typically reflects the geometry of the scene, such as objects 

occluding one another. 
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A typical edge might for instance be the border between a block of red color and a block 
of yellow. In contrast a line (as can be extracted by a ridge detector) can be a small 

number of pixels of a different color on an otherwise unchanging background. For a line, 
there may therefore usually be one edge on each side of the line. 

 

A simple edge model 

Although certain literature has considered the detection of ideal step edges, the edges 
obtained from natural images are usually not at all ideal step edges. Instead they are 

normally affected by one or several of the following effects: 

 

 focal blur caused by a finite depth-of-field and finite point spread function.

 penumbral blur caused by shadows created by light sources of non-zero radius.

 shading at a smooth object

 

A number of researchers have used a Gaussian smoothed step edge (an error function) as 

the simplest extension of the ideal step edge model for modeling the effects of edge blur 

in practical applications.
[5][3]

 Thus, a one-dimensional image f which has exactly one 

edge placed at x = 0 may be modeled as: 

 

 

 

 

 

 

 

At the left side of the edge, the intensity is , and right of the edge it is 

. The scale parameter σ is called the blur scale of the edge. 

 

Why edge detection is a non-trivial task 

 

To illustrate why edge detection is not a trivial task, let us consider the problem of 
detecting edges in the following one-dimensional signal. Here, we may intuitively say 
that there should be an edge between the 4th and 5th pixels. 
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5    7    6    4   152 148149 

 

 

 

 

If the intensity difference were smaller between the 4th and the 5th pixels and if the 

intensity differences between the adjacent neighboring pixels were higher, it would not 
be as easy to say that there should be an edge in the corresponding region. Moreover, one 

could argue that this case is one in which there are several edges. 

 

 

5    7    6    41   113 148149 

 

 

 

 

Hence, to firmly state a specific threshold on how large the intensity change between two 

neighbouring pixels must be for us to say that there should be an edge between these 

pixels is not always simple. Indeed, this is one of the reasons why edge detection may be 

a non-trivial problem unless the objects in the scene are particularly simple and the 

illumination conditions can be well controlled (see for example, the edges extracted from 

the image with the girl above). 

 

Approaches to edge detection 

 

There are many methods for edge detection, but most of them can be grouped into two 

categories, search-based and zero-crossing based. The search-based methods detect edges 

by first computing a measure of edge strength, usually a first-order derivative expression 

such as the gradient magnitude, and then searching for local directional maxima of the 

gradient magnitude using a computed estimate of the local orientation of the edge, 

usually the gradient direction. The zero-crossing based methods search for zero crossings 

in a second-order derivative expression computed from the image in order to find edges, 

usually the zero-crossings of the Laplacian or the zero-crossings of a non-linear 

differential expression. As a pre-processing step to edge detection, a smoothing stage, 

typically Gaussian smoothing, is almost always applied (see also noise reduction). 
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The edge detection methods that have been published mainly differ in the types of 
smoothing filters that are applied and the way the measures of edge strength are 

computed. As many edge detection methods rely on the computation of image gradients, 
they also differ in the types of filters used for computing gradient estimates in the x- and 

y-directions. 

 

 

A survey of a number of different edge detection methods can be found in (Ziou and 
Tabbone 1998); see also the encyclopedia articles on edge detection in Encyclopedia of 
Mathematics and Encyclopedia of Computer Science and Engineering. 

 

Canny edge detection 

 

John Canny considered the mathematical problem of deriving an optimal smoothing filter 

given the criteria of detection, localization and minimizing multiple responses to a single 

edge. He showed that the optimal filter given these assumptions is a sum of four 

exponential terms. He also showed that this filter can be well approximated by first-order 

derivatives of Gaussians. Canny also introduced the notion of non-maximum suppression, 

which means that given the presmoothing filters, edge points are defined as points where 

the gradient magnitude assumes a local maximum in the gradient direction. Looking for 

the zero crossing of the 2nd derivative along the gradient direction was first proposed by 

Haralick. It took less than two decades to find a modern geometric variational meaning 

for that operator that links it to the Marr-Hildreth (zero crossing of the Laplacian) edge 

detector. That observation was presented by Ron Kimmel and Alfred Bruckstein. 

 

Although his work was done in the early days of computer vision, the Canny edge 
detector (including its variations) is still a state-of-the-art edge detector. Unless the 
preconditions are particularly suitable, it is hard to find an edge detector that performs 
significantly better than the Canny edge detector. 

 

The Canny-Deriche detector was derived from similar mathematical criteria as the Canny 
edge detector, although starting from a discrete viewpoint and then leading to a set of 
recursive filters for image smoothing instead of exponential filters or Gaussian filters. 

 

The differential edge detector described below can be seen as a reformulation of Canny's 
method from the viewpoint of differential invariants computed from a scale-space 
representation leading to a number of advantages in terms of both theoretical analysis and 
sub-pixel implementation. 

 

Other first-order methods 
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For estimating image gradients from the input image or a smoothed version of it, 
different gradient operators can be applied. The simplest approach is to use central 
differences: 

 

 

 

 

 

corresponding to the application of the following filter masks to the image data: 

 

 

 

 

 

 

 

 

 

 

 

The well-known and earlier Sobel operator is based on the following filters: 

 

 

 

 

 

 

 

Given such estimates of first- order derivatives, the gradient magnitude is then computed 
as: 

 

 

 

 

 

 

while the gradient orientation can be estimated as 



136 
 

 

 

 

 

 

Other first-order difference operators for estimating image gradient have been proposed 
in the Prewitt operator and Roberts cross. 

 

Thresholding and linking 

 

Once we have computed a measure of edge strength (typically the gradient magnitude), 

the next stage is to apply a threshold, to decide whether edges are present or not at an 
image point. The lower the threshold, the more edges will be detected, and the result will 

be increasingly susceptible to noise and detecting edges of irrelevant features in the 
image. Conversely a high threshold may miss subtle edges, or result in fragmented edges. 

 

If the edge thresholding is applied to just the gradient magnitude image, the resulting 

edges will in general be thick and some type of edge thinning post-processing is 

necessary. For edges detected with non-maximum suppression however, the edge curves 

are thin by definition and the edge pixels can be linked into edge polygon by an edge 

linking (edge tracking) procedure. On a discrete grid, the non-maximum suppression 

stage can be implemented by estimating the gradient direction using first-order 

derivatives, then rounding off the gradient direction to multiples of 45 degrees, and 

finally comparing the values of the gradient magnitude in the estimated gradient 

direction. 

 

A commonly used approach to handle the problem of appropriate thresholds for 
thresholding is by using thresholding with hysteresis. This method uses multiple 
thresholds to find edges. We begin by using the upper threshold to find the start of an 

 

 

edge. Once we have a start point, we then trace the path of the edge through the image 

pixel by pixel, marking an edge whenever we are above the lower threshold. We stop 

marking our edge only when the value falls below our lower threshold. This approach 

makes the assumption that edges are likely to be in continuous curves, and allows us to 

follow a faint section of an edge we have previously seen, without meaning that every 

noisy pixel in the image is marked down as an edge. Still, however, we have the problem 

of choosing appropriate thresholding parameters, and suitable thresholding values may 

vary over the image. 

 

Edge Thinning 
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Edge thinning is a technique used to remove the unwanted spurious points on the edge of 

an image. This technique is employed after the image has been filtered for noise (using 
median, Gaussian filter etc.), the edge operator has been applied (like the ones described 

above) to detect the edges and after the edges have been smoothed using an appropriate 
threshold value. This removes all the unwanted points and if applied carefully, results in 

one pixel thick edge elements. 

 

Advantages: 1) Sharp and thin edges lead to greater efficiency in object recognition. 2) If 
you are using Hough transforms to detect lines and ellipses then thinning could give 
much better results. 3) If the edge happens to be boundary of a region then, thinning 
could easily give the image parameters like perimeter without much algebra. 

 

There are many popular algorithms used to do this, one such is described below: 

 

1) Choose a type of connectivity, like 8, 6 or 4. 
 

2) 8 connectivity is preferred, where all the immediate pixels surrounding a particular 
pixel are considered. 

 

3) Remove points from North, south, east and west. 
 

4) Do this in multiple passes, i.e. after the north pass, use the same semi processed image 
in the other passes and so on. 

 

5) Remove a point if: 
 

The point has no neighbors in the North (if you are in the north pass, 
and respective directions for other passes.) 

 

The point is not the end of a line. 
The point is isolated. 

 

Removing the points will not cause to disconnect its neighbors in any way. 

 

6) Else keep the point. The number of passes across direction should be chosen according 
to the level of accuracy desired. 

 

 

Second-order approaches to edge detection 
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Some edge-detection operators are instead based upon second-order derivatives of the 

intensity. This essentially captures the rate of change in the intensity gradient. Thus, in 

the ideal continuous case, detection of zero-crossings in the second derivative captures 

local maxima in the gradient. 

 

The early Marr-Hildreth operator is based on the detection of zero-crossings of the 

Laplacian operator applied to a Gaussian-smoothed image. It can be shown, however, 
that this operator will also return false edges corresponding to local minima of the 

gradient magnitude. Moreover, this operator will give poor localization at curved edges. 
Hence, this operator is today mainly of historical interest. 

 

Differential edge detection 

 

A more refined second-order edge detection approach which automatically detects edges 
with sub-pixel accuracy, uses the following differential approach of detecting zero-
crossings of the second-order directional derivative in the gradient direction: 

 

Following the differential geometric way of expressing the requirement of non-maximum 
suppression proposed by Lindeberg, let us introduce at every image point a local 

 

coordinate system (u,v), with the v-direction parallel to the gradient direction. Assuming 

that the image has been presmoothed by Gaussian smoothing and a scale-space 

 

representation L(x,y;t) at scale t has been computed, we can require that the gradient 
magnitude of the scale-space representation, which is equal to the first-order directional 

derivative in the v-direction Lv, should have its first order directional derivative in the v-

direction equal to zero 

 

 

 

 

while the second-order directional derivative in the v-direction of Lv should be negative, 

i.e., 
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Written out as an explicit expression in terms of local partial derivatives Lx, Ly ... Lyyy, 

this edge definition can be expressed as the zero-crossing curves of the differential 

invariant 

 

 

 

 

 

that satisfy a sign-condition on the following differential invariant 

 

 

 

 

where Lx,  Ly   ...  Lyyy   denote  partial  derivatives  computed  from  a scale-space 

 

representation L obtained by smoothing the original image with a Gaussian kernel. In this 

way, the edges will be automatically obtained as continuous curves with subpixel 

accuracy. Hysteresis thresholding can also be applied to these differential and subpixel 
edge segments. 

 

In practice, first-order derivative approximations can be computed by central differences 

as described above, while second-order derivatives can be computed from the scale-space 

representation L according to: 

 

 

 

 

 

corresponding to the following filter masks: 

 

 

 

 

 

Higher-order derivatives for the third-order sign condition can be obtained in an 
analogous fashion. 
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Phase congruency based edge detection 

 

A recent development in edge detection techniques takes a frequency domain approach to 

finding edge locations. Phase congruency (also known as phase coherence) methods 

attempt to find locations in an image where all sinusoids in the frequency domain are in 

phase. These locations will generally correspond to the location of a perceived edge, 

regardless of whether the edge is represented by a large change in intensity in the spatial 

domain. A key benefit of this technique is that it responds strongly to Mach bands, and 

avoids false positives typically found around roof edges. A roof edge, is a discontinuity in 

the first order derivative of a grey-level profile
]
 

 

Thresholding 

 

Thresholding is the simplest method of image segmentation. From a grayscale image, 
thresholding can be used to create binary images 

 

Method 

 

During the thresholding process, individual pixels in an image are marked as ―object‖ 
pixels if their value is greater than some threshold value (assuming an object to be 
brighter than the background) and as ―background‖ pixels otherwise. This convention is 

 

known as threshold above. Variants include threshold below, which is opposite of 
threshold above; threshold inside, where a pixel is labeled "object" if its value is between 

two thresholds; and threshold outside, which is the opposite of threshold inside (Shapiro, 
et al. 2001:83). Typically, an object pixel is given a value of ―1‖ while a background 

pixel is given a value of ―0.‖ Finally, a binary image is created by coloring each pixel 
white or black, depending on a pixel's label's. 

 

Threshold selection 

 

The key parameter in the thresholding process is the choice of the threshold value (or 

values, as mentioned earlier). Several different methods for choosing a threshold exist; 

users can manually choose a threshold value, or a thresholding algorithm can compute a 

value automatically, which is known as automatic thresholding (Shapiro, et al. 2001:83). 

A simple method would be to choose the mean or median value, the rationale being that 

if the object pixels are brighter than the background, they should also be brighter than the 

average. In a noiseless image with uniform background and object values, the mean or 

median will work well as the threshold, however, this will generally not be the case. A 

more sophisticated approach might be to create a histogram of the image pixel intensities 
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and use the valley point as the threshold. The histogram approach assumes that there is 

some average value for the background and object pixels, but that the actual pixel values 

have some variation around these average values. However, this may be computationally 

expensive, and image histograms may not have clearly defined valley points, often 

making the selection of an accurate threshold difficult. One method that is relatively 

simple, does not require much specific knowledge of the image, and is robust against 

image noise, is the following iterative method: 

 

1. An initial threshold (T) is chosen, this can be done randomly or according to any 
other method desired.  

2. The image is segmented into object and background pixels as described above, 
creating two sets:  

1. G1 = {f(m,n):f(m,n)>T} (object pixels) 

2. G2 = {f(m,n):f(m,n) T} (background pixels) (note, f(m,n) is the value of 

the pixel located in the m
th

 column, n
th

 row)  

3. The average of each set is computed. 

1. m1 = average value of G1 

2. m2 = average value of G2  

4. A new threshold is created that is the average of m1 and m2  

1. T‘ = (m1 + m2)/2  

5. Go back to step two, now using the new threshold computed in step four, keep 

repeating until the new threshold matches the one before it (i.e. until convergence 
has been reached). 

 

This iterative algorithm is a special one-dimensional case of the k-means clustering 
algorithm, which has been proven to converge at a local minimum—meaning that a 
different initial threshold may give a different final result. 

Adaptive thresholding 

Thresholding is called adaptive thresholding when a different threshold is used for 
different regions in the image. This may also be known as local or dynamic thresholding 
(Shapiro, et al. 2001:89). 

Categorizing thresholding Methods 

Sezgin and Sankur (2004) categorize thresholding methods into the following six groups 
based on the information the algorithm manipulates (Sezgin et al., 2004): 

 

 "histogram shape-based methods, where, for example, the peaks, valleys and 
curvatures of the smoothed histogram are analyzed
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 clustering-based methods, where the gray-level samples are clustered in two parts 

as background and foreground (object), or alternately are modeled as a mixture of 
two Gaussians

 entropy-based methods result in algorithms that use the entropy of the foreground 

and background regions, the cross-entropy between the original and binarized 
image, etc.

 object attribute-based methods search a measure of similarity between the gray-
level and the binarized images, such as fuzzy shape similarity, edge coincidence, 
etc.

 spatial methods [that] use higher-order probability distribution and/or correlation 

between pixels

 local methods adapt the threshold value on each pixel to the local image 

characteristics."

 

Multiband thresholding 

 

Colour images can also be thresholded. One approach is to designate a separate threshold 

for each of the RGB components of the image and then combine them with an AND 

operation. This reflects the way the camera works and how the data is stored in the 

computer, but it does not correspond to the way that people recognize colour. Therefore, 

the HSL and HSV colour models are more often used. It is also possible to use the 

CMYK colour model (Pham et al., 2007). 

 

Region growing 

 

Region growing is a simple region-based image segmentation method. It is also 

classified as a pixel-based image segmentation method since it involves the selection of 
initial seed points. 

 

This approach to segmentation examines neighboring pixels of initial ―seed points‖ and 
determines whether the pixel neighbors should be added to the region. The process is 
iterated on, in the same manner as general data clustering algorithms. 

 

Region-based segmentation 

 

The main goal of segmentation is to partition an image into regions. Some segmentation 
methods such as "Thresholding" achieve this goal by looking for the boundaries between 

regions based on discontinuities in gray levels or color properties. Region-based 
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segmentation is a technique for determining the region directly. The basic formulation for 
Region-Based Segmentation is: 

 

 

 

 

(b)Ri is a connected region, i = 1, 2, ...,n 

 

 

(d)P(Ri) = TRUE for i = 1,2,...,n. 

 

 

P(Ri) is a logical predicate defined over the points in set P(Rk) and is the null 

set. 

 

(a) means that the segmentation must be complete; that is, every pixel must be in a 
region. 

 

(b) requires that points in a region must be connected in some predefined sense. 
 

(c) indicates that the regions must be disjoint. 
 

(d) deals with the properties that must be satisfied by the pixels in a segmented region. 

For example P(Ri) = TRUE if all pixels in Ri have the same gray level. 
 

(e) indicates that region Ri and Rj are different in the sense of predicate P. 
 

Basic concept of seedpoints 

 

The first step in region growing is to select a set of seed points. Seed point selection is 
based on some user criterion (for example, pixels in a certain gray-level range, pixels 
evenly spaced on a grid, etc.). The initial region begins as the exact location of these 

seeds. 

 

The regions are then grown from these seed points to adjacent points depending on a 
region membership criterion. The criterion could be, for example, pixel intensity, gray 
level texture, or color. 
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Since the regions are grown on the basis of the criterion, the image information itself is 
important. For example, if the criterion were a pixel intensity threshold value, knowledge 
of the histogram of the image would be of use, as one could use it to determine a suitable 
threshold value for the region membership criterion. 

 

There is a very simple example followed below. Here we use 4-connected neighborhood 

to grow from the seed points. We can also choose 8-connected neighborhood for our 

pixels adjacent relationship. And the criteria we make here is the same pixel value. That 

is, we keep examining the adjacent pixels of seed points. If they have the same intensity 

value with the seed points, we classify them into the seed points. It is an iterated process 

until there are no change in two successive iterative stages. Of course, we can make other 

criteria, but the main goal is to classify the similarity of the image into regions. 

 

Some important issues 
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Fig. 0 The histogram of Fig. 1 

 

 

 

 

 

 

 

 

Fig. 1 The Original Figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 
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Fig. 3 Threshold：225~255 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Threshold：190~255 

 

 

 

 

Fig. 5 Threshold：155~255 

Then we can conclude several important issues about region growing： 
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1.The suitable selection of seed points is important. 

The selection of seed points is depending on the users. For example, in a gray-level 

lightning image, we may want to segment the lightning from the background. Then 
probably, we can examine the histogram and choose the seed points from the highest 

range of it. 

 

2.More information of the image is better. 

Obviously, the connectivity or pixel adjacent information is helpful for us to determine 
the threshold and seed points. 

 

3.The value, “minimum area threshold”. 

No region in region growing method result will be smaller than this threshold in the 
segmented image. 

 

4.The value, “Similarity threshold value“. 

If the difference of pixel-value or the difference value of average gray level of a set of 
pixels less than ―Similarity threshold value‖, the regions will be considered as a same 
region. 

The criteria of similarities or so called homogeneity we choose are also important. It 
usually depends on the original image and the segmentation result we want. 

Here are some criteria we often use：Gray level(average intensity or variance), color, 

and texture or shape. 

 

Simulation examples 

Here we show a simple example for region growing. 

Figure. 1 is the original image which is a gray-scale lightning image. The gray-scale 
value of this image is from 0 to 255. The purpose we apply region growing on this image 

is that we want to mark the strongest lightning part of the image and we also want the 

result is connected without being split apart. Therefore, we choose the points having the 
highest gray-scale value which is 255 as the seed points showed in the Figure. 2. 

After determining the seed points, we have to determine the range of threshold. Always 

keeps in mind that the purpose we want to do is to mark the strongest light in the image. 
The third figure is the region growing result from choosing the threshold between 225 

and the value of seed points (which is 255). It means we only want to mark out the points 
whose gray-scale values are above 225. 
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If we make the range of threshold wider, we will get a result having a bigger area of the 
lightning region show as the Figure. 3 and the Figure. 4. 

 

We can observe the difference between the last two figures which have different 
threshold value showed above. Region growing provides the ability for us to separate the 
part we want connected. 

As we can see in Figure. 3 to Figure. 5, the segmented result in this example are seed-

oriented connected. That means the result grew from the same seed points are the same 

regions. And the points will not be grown without connected with the seed points in the 

beginning. Therefore, we can mention that there are still lots of points in the original 

image having the gray-scale value above 155 which are not marked in Figure. 5. This 

characteristic ensures the reliability of the segmentation and provides the ability to resist 

noise. For this example, this characteristic prevents us marking out the non-lightning part 

in the image because the lightning is always connected as one part. 

 

The advantages and disadvantages of region growing 

We briefly conclude the advantages and disadvantages of region growing. 

 

Advantages： 

 

1. Region growing methods can correctly separate the regions that have the same 
properties we define. 

 

2. Region growing methods can provide the original images which have clear edges the 

good segmentation results. 
 

3. The concept is simple. We only need a small numbers of seed point to represent the 
property we want, then grow the region. 

 

4. We can determine the seed points and the criteria we want to make. 
 

5. We can choose the multiple criteria at the same time. 
 

6. It performs well with respect to noise. 
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Disadvantages： 

1. The computation is consuming, no matter the time or power. 
2. Noise or variation of intensity may result in holes or oversegmentation. 
3. This method may not distinguish the shading of the real images. 

 
We can conquer the noise problem easily by using some mask to filter the holes or 
outlier. Therefore, the problem or noise actually does not exist. In conclusion, it is 
obvious that the most serious problem of region growing is the power and time 
consuming. 

Boundary Representation 

 Models are a more explicit representation than CSG.

 The object is represented by a complicated data structure giving 
information about each of the object's faces, edges and vertices and how they are 
joined together.

 Appears to be a more natural representation for Vision since surface 
information is readily available.

 The description of the object can be into two parts:

Topology 

-- records the connectivity of the faces, edges and vertices by means of pointers in 
the data structure.  

Geometry 

-- describes the exact shape and position of each of the edges, faces and vertices. 

 The geometry of a vertex is just its position in space as given by its 
(x,y,z) coordinates.

 Edges may be straight lines, circular arcs, etc..

 A face is represented by some description of its surface (algebraic 
or parametric forms used). 

 

 

 

 

 

 

 

 

 

 

Fig. 50 Faces, edges and vertices 
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Chain code 

A chain code is a lossless compression algorithm for monochrome images. The basic 

principle of chain codes is to separately encode each connected component, or "blot", in 

the image. For each such region, a point on the boundary is selected and its coordinates 

are transmitted. The encoder then moves along the boundary of the image and, at each 

step, transmits a symbol representing the direction of this movement. This continues until 

the encoder returns to the starting position, at which point the blot has been completely 

described, and encoding continues with the next blot in the image. 

 

This encoding method is particularly effective for images consisting of a reasonable 
number of large connected components. 

 

Some popular chain codes include the Freeman Chain Code of Eight Directions (FCCE), 
Vertex Chain Code (VCC), Three OrThogonal symbol chain code (3OT) and Directional 
Freeman Chain Code of Eight Directions (DFCCE). 

 

A related blot encoding method is crack code Algorithms exist to convert between chain 
code, crack code, and run-length encoding. 
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Digital Image Processing 
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Textures 

"Texture" is an ambiguous word and in the context of texture synthesis may have one of 
the following meanings: 

1. In common speech, "texture" used as a synonym for "surface structure". Texture 
has been described by five different properties in the psychology of perception: 

coarseness, contrast, directionality, line-likeness and roughness 
[1]

.  

2. In 3D computer graphics, a texture is a digital image applied to the surface of a 
three-dimensional model by texture mapping to give the model a more realistic 
appearance. Often, the image is a photograph of a "real" texture, such as wood 
grain.  

3. In image processing, every digital image composed of repeated elements is called 
a "texture." For example, see the images below. 

 

Texture can be arranged along a spectrum going from stochastic to regular: 

 Stochastic textures. Texture images of stochastic textures look like noise: colour 

dots that are randomly scattered over the image, barely specified by the attributes 
minimum and maximum brightness and average colour. Many textures look like 

stochastic textures when viewed from a distance. An example of a stochastic 
texture is roughcast.

 Structured textures. These textures look like somewhat regular patterns. An 

example of a structured texture is a stonewall or a floor tiled with paving stones.

 

Visual descriptors 

In computer vision, visual descriptors or image descriptors are descriptions of the 
visual features of the contents in images, videos, algorithms, or applications that produce 
such descriptions. They describe elementary characteristics such as the shape, the color, 
the texture or the motion, among others. 

 

Introduction 

As a result of the new communication technologies and the massive use of Internet in our 
society, the amount of audio-visual information available in digital format is increasing 

considerably. Therefore, it has been necessary to design some systems that allow us to 
describe the content of several types of multimedia information in order to search and 

classify them. 

The audio-visual descriptors are in charge of the contents description. These descriptors 
have a good knowledge of the objects and events found in a video, image or audio and 
they allow the quick and efficient searches of the audio-visual content. 

This system can be compared to the search engines for textual contents. Although it is 

certain, that it is relatively easy to find text with a computer, is much more difficult to 
find concrete audio and video parts. For instance, imagine somebody searching a scene of 
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a happy person. The happiness is a feeling and it is not evident its shape, color and 
texture description in images. 

The description of the audio-visual content is not a superficial task and it is essential for 
the effective use of this type of archives. The standardization system that deals with 
audio-visual descriptors is the MPEG-7 (Motion Picture Expert Group - 7). 

Types of visual descriptors 

Descriptors are the first step to find out the connection between pixels contained in a 
digital image and what humans recall after having observed an image or a group of 
images after some minutes. 

Visual descriptors are divided in two main groups:  

1. General information descriptors: they contain low level descriptors which give 

a description about color, shape, regions, textures and motion.  

2. Specific domain information descriptors: they give information about objects 

and events in the scene. A concrete example would be face recognition. 
 

General information descriptors 

General information descriptors consist of a set of descriptors that covers different basic 
and elementary features like: color, texture, shape, motion, location and others. This 
description is automatically generated by means of signal processing. 

 COLOR: the most basic quality of visual content. Five tools are defined to 

describe color. The three first tools represent the color distribution and the last 
ones describe the color relation between sequences or group of images:

o Dominant Color Descriptor (DCD) 
o Scalable Color Descriptor (SCD)  

o Color Structure Descriptor (CSD) 
o Color Layout Descriptor (CLD)

o Group of frame (GoF) or Group-of-pictures (GoP)

 TEXTURE: also, an important quality in order to describe an image. The texture 

descriptors characterize image textures or regions. They observe the region 
homogeneity and the histograms of these region borders. The set of descriptors is 
formed by:

o Homogeneous Texture Descriptor (HTD) 
o Texture Browsing Descriptor (TBD) 

o Edge Histogram Descriptor (EHD)

 SHAPE: contains important semantic information due to human‘s ability to 

recognize objects through their shape. However, this information can only be 

extracted by means of a segmentation similar to the one that the human visual 

system implements. Nowadays, such a segmentation system is not available yet, 

however there exists a serial of algorithms which are considered to be a good 



165 
 

approximation. These descriptors describe regions, contours and shapes for 2D 

images and for 3D volumes. The shape descriptors are the following ones:

o Region-based Shape Descriptor (RSD) o 
Contour-based Shape Descriptor (CSD) o 
3-D Shape Descriptor (3-D SD)

 MOTION: defined by four different descriptors which describe motion in video 

sequence. Motion is related to the objects motion in the sequence and to the 

camera motion. This last information is provided by the capture device, whereas 
the rest is implemented by means of image processing. The descriptor set is the 

following one:

o Motion Activity Descriptor (MAD) 
o Camera Motion Descriptor (CMD) 

o Motion Trajectory Descriptor (MTD) 
o Warping and Parametric Motion Descriptor (WMD and PMD) 

 

 LOCATION: elements location in the image is used to describe elements in the 

spatial domain. In addition, elements can also be located in the temporal domain:
o Region Locator Descriptor (RLD) 
o Spatio Temporal Locator Descriptor (STLD) 

 

Specific domain information descriptors 

These descriptors, which give information about objects and events in the scene, are not 

easily extractable, even more when the extraction is to be automatically done. 
Nevertheless they can be manually processed. 

As mentioned before, face recognition is a concrete example of an application that tries to 
automatically obtain this information. 

Descriptors applications 

Among all applications, the most important ones are: 

 Multimedia documents search engines and classifiers.

 Digital library: visual descriptors allow a very detailed and concrete search of any 
video or image by means of different search parameters. For instance, the search 
of films where a known actor appears, the search of videos containing the Everest 
mountain, etc.

 Personalized electronic news service.

 Possibility of an automatic connection to a TV channel broadcasting a soccer 
match, for example, whenever a player approaches the goal area.

 Control and filtering of concrete audio-visual contents, like violent or 
pornographic material. Also, authorization for some multimedia contents.

 

------------------------------------X------------------------------------------------X------------------- 


